actix/address/channel.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
//! This is copy of [sync/mpsc/](https://github.com/rust-lang/futures-rs)
use std::{
fmt,
hash::{Hash, Hasher},
pin::Pin,
sync::{
atomic::{
AtomicBool, AtomicUsize,
Ordering::{Relaxed, SeqCst},
},
Arc, Weak,
},
task::{self, Poll},
thread,
};
use futures_core::{stream::Stream, task::__internal::AtomicWaker};
use parking_lot::Mutex;
use tokio::sync::oneshot::{channel as oneshot_channel, Receiver as OneshotReceiver};
use super::{
envelope::{Envelope, ToEnvelope},
queue::Queue,
SendError,
};
use crate::{
actor::Actor,
handler::{Handler, Message},
};
pub trait Sender<M>: Send
where
M::Result: Send,
M: Message + Send,
{
fn do_send(&self, msg: M) -> Result<(), SendError<M>>;
fn try_send(&self, msg: M) -> Result<(), SendError<M>>;
fn send(&self, msg: M) -> Result<OneshotReceiver<M::Result>, SendError<M>>;
fn boxed(&self) -> Box<dyn Sender<M> + Sync>;
fn hash(&self) -> usize;
fn connected(&self) -> bool;
/// Returns a downgraded sender, where the sender is downgraded into its weak counterpart.
fn downgrade(&self) -> Box<dyn WeakSender<M> + Sync + 'static>;
}
impl<S, M> Sender<M> for Box<S>
where
S: Sender<M> + ?Sized,
M::Result: Send,
M: Message + Send,
{
fn do_send(&self, msg: M) -> Result<(), SendError<M>> {
(**self).do_send(msg)
}
fn try_send(&self, msg: M) -> Result<(), SendError<M>> {
(**self).try_send(msg)
}
fn send(&self, msg: M) -> Result<OneshotReceiver<<M as Message>::Result>, SendError<M>> {
(**self).send(msg)
}
fn boxed(&self) -> Box<dyn Sender<M> + Sync> {
(**self).boxed()
}
fn hash(&self) -> usize {
(**self).hash()
}
fn connected(&self) -> bool {
(**self).connected()
}
fn downgrade(&self) -> Box<dyn WeakSender<M> + Sync> {
(**self).downgrade()
}
}
pub trait WeakSender<M>: Send
where
M::Result: Send,
M: Message + Send,
{
/// Attempts to upgrade a `WeakAddressSender<A>` to a [`Sender<M>`]
///
/// Returns [`None`] if the actor has since been dropped.
fn upgrade(&self) -> Option<Box<dyn Sender<M> + Sync>>;
fn boxed(&self) -> Box<dyn WeakSender<M> + Sync>;
}
/// The transmission end of a channel which is used to send values.
///
/// This is created by the `channel` method.
pub struct AddressSender<A: Actor> {
// Channel state shared between the sender and receiver.
inner: Arc<Inner<A>>,
// Handle to the task that is blocked on this sender. This handle is sent
// to the receiver half in order to be notified when the sender becomes
// unblocked.
sender_task: Arc<Mutex<SenderTask>>,
// True if the sender might be blocked. This is an optimization to avoid
// having to lock the mutex most of the time.
maybe_parked: Arc<AtomicBool>,
}
impl<A: Actor> fmt::Debug for AddressSender<A> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("AddressSender")
.field("sender_task", &self.sender_task)
.field("maybe_parked", &self.maybe_parked)
.finish()
}
}
/// A weakly referenced version of `AddressSender`.
///
/// This is created by the `AddressSender::downgrade` method.
pub struct WeakAddressSender<A: Actor> {
inner: Weak<Inner<A>>,
}
impl<A: Actor> Clone for WeakAddressSender<A> {
fn clone(&self) -> WeakAddressSender<A> {
WeakAddressSender {
inner: self.inner.clone(),
}
}
}
impl<A: Actor> fmt::Debug for WeakAddressSender<A> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("WeakAddressSender").finish()
}
}
impl<A: Actor> PartialEq for WeakAddressSender<A> {
fn eq(&self, other: &Self) -> bool {
self.inner.ptr_eq(&other.inner)
}
}
impl<A: Actor> Eq for WeakAddressSender<A> {}
#[allow(dead_code)]
trait AssertKinds: Send + Sync + Clone {}
/// The receiving end of a channel which implements the `Stream` trait.
///
/// This is a concrete implementation of a stream which can be used to represent
/// a stream of values being computed elsewhere. This is created by the
/// `channel` method.
pub struct AddressReceiver<A: Actor> {
inner: Arc<Inner<A>>,
}
/// Generate `AddressSenders` for the channel
pub struct AddressSenderProducer<A: Actor> {
inner: Arc<Inner<A>>,
}
struct Inner<A: Actor> {
// Max buffer size of the channel. If `0` then the channel is unbounded.
buffer: AtomicUsize,
// Internal channel state. Consists of the number of messages stored in the
// channel as well as a flag signalling that the channel is closed.
state: AtomicUsize,
// Atomic, FIFO queue used to send messages to the receiver.
message_queue: Queue<Envelope<A>>,
// Atomic, FIFO queue used to send parked task handles to the receiver.
parked_queue: Queue<Arc<Mutex<SenderTask>>>,
// Number of senders in existence.
num_senders: AtomicUsize,
// Handle to the receiver's task.
recv_task: AtomicWaker,
}
// Struct representation of `Inner::state`.
#[derive(Debug, Clone, Copy)]
struct State {
// `true` when the channel is open
is_open: bool,
// Number of messages in the channel
num_messages: usize,
}
impl State {
fn is_closed(&self) -> bool {
!self.is_open && self.num_messages == 0
}
}
// The `is_open` flag is stored in the left-most bit of `Inner::state`
const OPEN_MASK: usize = usize::MAX - (usize::MAX >> 1);
// When a new channel is created, it is created in the open state with no
// pending messages.
const INIT_STATE: usize = OPEN_MASK;
// The maximum number of messages that a channel can track is `usize::MAX >> 1`
const MAX_CAPACITY: usize = !(OPEN_MASK);
// The maximum requested buffer size must be less than the maximum capacity of
// a channel. This is because each sender gets a guaranteed slot.
const MAX_BUFFER: usize = MAX_CAPACITY >> 1;
// Sent to the consumer to wake up blocked producers
#[derive(Debug)]
struct SenderTask {
task: Option<task::Waker>,
is_parked: bool,
}
impl SenderTask {
fn new() -> Self {
SenderTask {
task: None,
is_parked: false,
}
}
fn notify(&mut self) -> bool {
self.is_parked = false;
if let Some(task) = self.task.take() {
task.wake();
true
} else {
false
}
}
}
/// Creates an in-memory channel implementation of the `Stream` trait with
/// bounded capacity.
///
/// This method creates a concrete implementation of the `Stream` trait which
/// can be used to send values across threads in a streaming fashion. This
/// channel is unique in that it implements back pressure to ensure that the
/// sender never outpaces the receiver. The channel capacity is equal to
/// `buffer + num-senders`. In other words, each sender gets a guaranteed slot
/// in the channel capacity, and on top of that there are `buffer` "first come,
/// first serve" slots available to all senders.
///
/// The `Receiver` returned implements the `Stream` trait and has access to any
/// number of the associated combinators for transforming the result.
pub fn channel<A: Actor>(buffer: usize) -> (AddressSender<A>, AddressReceiver<A>) {
// Check that the requested buffer size does not exceed the maximum buffer
// size permitted by the system.
assert!(buffer < MAX_BUFFER, "requested buffer size too large");
let inner = Arc::new(Inner {
buffer: AtomicUsize::new(buffer),
state: AtomicUsize::new(INIT_STATE),
message_queue: Queue::new(),
parked_queue: Queue::new(),
num_senders: AtomicUsize::new(1),
recv_task: AtomicWaker::new(),
});
let tx = AddressSender {
inner: Arc::clone(&inner),
sender_task: Arc::new(Mutex::new(SenderTask::new())),
maybe_parked: Arc::new(AtomicBool::new(false)),
};
let rx = AddressReceiver { inner };
(tx, rx)
}
//
//
// ===== impl Sender =====
//
//
impl<A: Actor> AddressSender<A> {
/// Is the channel still open
pub fn connected(&self) -> bool {
let curr = self.inner.state.load(SeqCst);
let state = decode_state(curr);
state.is_open
}
/// Attempts to send a message on this `Sender<A>` with blocking.
///
/// This function must be called from inside of a task.
pub fn send<M>(&self, msg: M) -> Result<OneshotReceiver<M::Result>, SendError<M>>
where
A: Handler<M>,
A::Context: ToEnvelope<A, M>,
M::Result: Send,
M: Message + Send,
{
// If the sender is currently blocked, reject the message
if !self.poll_unparked(false, None).is_ready() {
return Err(SendError::Full(msg));
}
// First, increment the number of messages contained by the channel.
// This operation will also atomically determine if the sender task
// should be parked.
//
// None is returned in the case that the channel has been closed by the
// receiver. This happens when `Receiver::close` is called or the
// receiver is dropped.
let park_self = match self.inc_num_messages() {
Some(num_messages) => {
// receiver is full
let buffer = self.inner.buffer.load(Relaxed);
buffer != 0 && num_messages >= buffer
}
None => return Err(SendError::Closed(msg)),
};
// If the channel has reached capacity, then the sender task needs to
// be parked. This will send the task handle on the parked task queue.
if park_self {
self.park();
}
let (tx, rx) = oneshot_channel();
let env = <A::Context as ToEnvelope<A, M>>::pack(msg, Some(tx));
self.queue_push_and_signal(env);
Ok(rx)
}
/// Attempts to send a message on this `Sender<A>` without blocking.
pub fn try_send<M>(&self, msg: M, park: bool) -> Result<(), SendError<M>>
where
A: Handler<M>,
<A as Actor>::Context: ToEnvelope<A, M>,
M::Result: Send,
M: Message + Send + 'static,
{
// If the sender is currently blocked, reject the message
if !self.poll_unparked(false, None).is_ready() {
return Err(SendError::Full(msg));
}
let park_self = match self.inc_num_messages() {
Some(num_messages) => {
// receiver is full
let buffer = self.inner.buffer.load(Relaxed);
buffer != 0 && num_messages >= buffer
}
None => return Err(SendError::Closed(msg)),
};
if park_self && park {
self.park();
}
let env = <A::Context as ToEnvelope<A, M>>::pack(msg, None);
self.queue_push_and_signal(env);
Ok(())
}
/// Send a message on this `Sender<A>` without blocking.
///
/// This function does not park current task.
pub fn do_send<M>(&self, msg: M) -> Result<(), SendError<M>>
where
A: Handler<M>,
<A as Actor>::Context: ToEnvelope<A, M>,
M::Result: Send,
M: Message + Send,
{
if self.inc_num_messages().is_none() {
Err(SendError::Closed(msg))
} else {
// If inc_num_messages returned Some(park_self), then the mailbox is still active.
// We ignore the boolean (indicating to park and wait) in the Some, and queue the
// message regardless.
let env = <A::Context as ToEnvelope<A, M>>::pack(msg, None);
self.queue_push_and_signal(env);
Ok(())
}
}
/// Downgrade to `WeakAddressSender` which can later be upgraded
pub fn downgrade(&self) -> WeakAddressSender<A> {
WeakAddressSender {
inner: Arc::downgrade(&self.inner),
}
}
// Push message to the queue and signal to the receiver
fn queue_push_and_signal(&self, msg: Envelope<A>) {
// Push the message onto the message queue
self.inner.message_queue.push(msg);
// Signal to the receiver that a message has been enqueued. If the
// receiver is parked, this will unpark the task.
self.inner.recv_task.wake();
}
// Increment the number of queued messages. Returns if the sender should
// block.
fn inc_num_messages(&self) -> Option<usize> {
let mut curr = self.inner.state.load(SeqCst);
loop {
let mut state = decode_state(curr);
if !state.is_open {
return None;
}
state.num_messages += 1;
let next = encode_state(&state);
match self
.inner
.state
.compare_exchange(curr, next, SeqCst, SeqCst)
{
Ok(_) => {
return Some(state.num_messages);
}
Err(actual) => curr = actual,
}
}
}
// TODO: Not sure about this one, I modified code to match the futures one, might still be buggy
fn park(&self) {
{
let mut sender = self.sender_task.lock();
sender.task = None;
sender.is_parked = true;
}
// Send handle over queue
self.inner.parked_queue.push(Arc::clone(&self.sender_task));
// Check to make sure we weren't closed after we sent our task on the queue
let state = decode_state(self.inner.state.load(SeqCst));
self.maybe_parked.store(state.is_open, Relaxed);
}
fn poll_unparked(&self, do_park: bool, cx: Option<&mut task::Context<'_>>) -> Poll<()> {
// First check the `maybe_parked` variable. This avoids acquiring the
// lock in most cases
if self.maybe_parked.load(Relaxed) {
// Get a lock on the task handle
let mut task = self.sender_task.lock();
if !task.is_parked {
self.maybe_parked.store(false, Relaxed);
return Poll::Ready(());
}
// At this point, an unpark request is pending, so there will be an
// unpark sometime in the future. We just need to make sure that
// the correct task will be notified.
//
// Update the task in case the `Sender` has been moved to another
// task
task.task = if do_park {
cx.map(|cx| cx.waker().clone())
} else {
None
};
Poll::Pending
} else {
Poll::Ready(())
}
}
}
impl<A, M> Sender<M> for AddressSender<A>
where
A: Handler<M>,
A::Context: ToEnvelope<A, M>,
M::Result: Send,
M: Message + Send + 'static,
{
fn do_send(&self, msg: M) -> Result<(), SendError<M>> {
self.do_send(msg)
}
fn try_send(&self, msg: M) -> Result<(), SendError<M>> {
self.try_send(msg, true)
}
fn send(&self, msg: M) -> Result<OneshotReceiver<M::Result>, SendError<M>> {
self.send(msg)
}
fn boxed(&self) -> Box<dyn Sender<M> + Sync> {
Box::new(self.clone())
}
fn hash(&self) -> usize {
let hash: *const _ = self.inner.as_ref();
hash as usize
}
fn connected(&self) -> bool {
self.connected()
}
fn downgrade(&self) -> Box<dyn WeakSender<M> + Sync + 'static> {
Box::new(WeakAddressSender {
inner: Arc::downgrade(&self.inner),
})
}
}
impl<A: Actor> Clone for AddressSender<A> {
fn clone(&self) -> AddressSender<A> {
// Since this atomic op isn't actually guarding any memory and we don't
// care about any orderings besides the ordering on the single atomic
// variable, a relaxed ordering is acceptable.
let mut curr = self.inner.num_senders.load(SeqCst);
loop {
// If the maximum number of senders has been reached, then fail
if curr == self.inner.max_senders() {
panic!("cannot clone `Sender` -- too many outstanding senders");
}
debug_assert!(curr < self.inner.max_senders());
let next = curr + 1;
#[allow(deprecated)]
let actual = self.inner.num_senders.compare_and_swap(curr, next, SeqCst);
// The ABA problem doesn't matter here. We only care that the
// number of senders never exceeds the maximum.
if actual == curr {
return AddressSender {
inner: Arc::clone(&self.inner),
sender_task: Arc::new(Mutex::new(SenderTask::new())),
maybe_parked: Arc::new(AtomicBool::new(false)),
};
}
curr = actual;
}
}
}
impl<A: Actor> Drop for AddressSender<A> {
fn drop(&mut self) {
// Ordering between variables don't matter here
let prev = self.inner.num_senders.fetch_sub(1, SeqCst);
// last sender, notify receiver task
if prev == 1 {
self.inner.recv_task.wake();
}
}
}
impl<A: Actor> PartialEq for AddressSender<A> {
fn eq(&self, other: &Self) -> bool {
Arc::ptr_eq(&self.inner, &other.inner)
}
}
impl<A: Actor> Eq for AddressSender<A> {}
impl<A: Actor> Hash for AddressSender<A> {
fn hash<H: Hasher>(&self, state: &mut H) {
let hash: *const Inner<A> = self.inner.as_ref();
hash.hash(state);
}
}
//
//
// ===== impl WeakSender =====
//
//
impl<A: Actor> WeakAddressSender<A> {
/// Attempts to upgrade the `WeakAddressSender<A>` pointer to an [`AddressSender<A>`]
///
/// Returns [`None`] if the actor has since been dropped.
pub fn upgrade(&self) -> Option<AddressSender<A>> {
Weak::upgrade(&self.inner).map(|inner| AddressSenderProducer { inner }.sender())
}
}
impl<A, M> WeakSender<M> for WeakAddressSender<A>
where
A: Handler<M>,
A::Context: ToEnvelope<A, M>,
M::Result: Send,
M: Message + Send + 'static,
{
fn upgrade(&self) -> Option<Box<dyn Sender<M> + Sync>> {
if let Some(inner) = WeakAddressSender::upgrade(self) {
Some(Box::new(inner))
} else {
None
}
}
fn boxed(&self) -> Box<dyn WeakSender<M> + Sync> {
Box::new(self.clone())
}
}
//
//
// ===== impl SenderProducer =====
//
//
impl<A: Actor> AddressSenderProducer<A> {
/// Are any senders connected
pub fn connected(&self) -> bool {
self.inner.num_senders.load(SeqCst) != 0
}
/// Get channel capacity
pub fn capacity(&self) -> usize {
self.inner.buffer.load(Relaxed)
}
/// Set channel capacity
///
/// This method wakes up all waiting senders if new capacity is greater
/// than current
pub fn set_capacity(&mut self, cap: usize) {
let buffer = self.inner.buffer.load(Relaxed);
self.inner.buffer.store(cap, Relaxed);
// wake up all
if cap > buffer {
while let Some(task) = unsafe { self.inner.parked_queue.pop_spin() } {
task.lock().notify();
}
}
}
/// Get sender side of the channel
pub fn sender(&self) -> AddressSender<A> {
// this code same as Sender::clone
let mut curr = self.inner.num_senders.load(SeqCst);
loop {
// If the maximum number of senders has been reached, then fail
if curr == self.inner.max_senders() {
panic!("cannot clone `Sender` -- too many outstanding senders");
}
let next = curr + 1;
#[allow(deprecated)]
let actual = self.inner.num_senders.compare_and_swap(curr, next, SeqCst);
// The ABA problem doesn't matter here. We only care that the
// number of senders never exceeds the maximum.
if actual == curr {
return AddressSender {
inner: Arc::clone(&self.inner),
sender_task: Arc::new(Mutex::new(SenderTask::new())),
maybe_parked: Arc::new(AtomicBool::new(false)),
};
}
curr = actual;
}
}
}
//
//
// ===== impl Receiver =====
//
//
impl<A: Actor> AddressReceiver<A> {
/// Returns whether any senders are still connected.
pub fn connected(&self) -> bool {
self.inner.num_senders.load(SeqCst) != 0
}
/// Returns the channel capacity.
pub fn capacity(&self) -> usize {
self.inner.buffer.load(Relaxed)
}
/// Sets the channel capacity.
///
/// This method wakes up all waiting senders if the new capacity
/// is greater than the current one.
pub fn set_capacity(&mut self, cap: usize) {
let buffer = self.inner.buffer.load(Relaxed);
self.inner.buffer.store(cap, Relaxed);
// wake up all
if cap > buffer {
while let Some(task) = unsafe { self.inner.parked_queue.pop_spin() } {
task.lock().notify();
}
}
}
/// Returns the sender side of the channel.
pub fn sender(&self) -> AddressSender<A> {
// this code same as Sender::clone
let mut curr = self.inner.num_senders.load(SeqCst);
loop {
// If the maximum number of senders has been reached, then fail
if curr == self.inner.max_senders() {
panic!("cannot clone `Sender` -- too many outstanding senders");
}
let next = curr + 1;
#[allow(deprecated)]
let actual = self.inner.num_senders.compare_and_swap(curr, next, SeqCst);
// The ABA problem doesn't matter here. We only care that the
// number of senders never exceeds the maximum.
if actual == curr {
return AddressSender {
inner: Arc::clone(&self.inner),
sender_task: Arc::new(Mutex::new(SenderTask::new())),
maybe_parked: Arc::new(AtomicBool::new(false)),
};
}
curr = actual;
}
}
/// Creates the sender producer.
pub fn sender_producer(&self) -> AddressSenderProducer<A> {
AddressSenderProducer {
inner: self.inner.clone(),
}
}
fn next_message(&mut self) -> Poll<Option<Envelope<A>>> {
// Pop off a message
match unsafe { self.inner.message_queue.pop_spin() } {
Some(msg) => {
// If there are any parked task handles in the parked queue,
// pop one and unpark it.
self.unpark_one();
// Decrement number of messages
self.dec_num_messages();
Poll::Ready(Some(msg))
}
None => {
let state = decode_state(self.inner.state.load(SeqCst));
if state.is_closed() {
// If closed flag is set AND there are no pending messages
// it means end of stream
Poll::Ready(None)
} else {
// If queue is open, we need to return Pending
// to be woken up when new messages arrive.
// If queue is closed but num_messages is non-zero,
// it means that senders updated the state,
// but didn't put message to queue yet,
// so we need to park until sender unparks the task
// after queueing the message.
Poll::Pending
}
}
}
}
// Unpark a single task handle if there is one pending in the parked queue
fn unpark_one(&mut self) {
if let Some(task) = unsafe { self.inner.parked_queue.pop_spin() } {
task.lock().notify();
}
}
fn dec_num_messages(&self) {
// OPEN_MASK is highest bit, so it's unaffected by subtraction
// unless there's underflow, and we know there's no underflow
// because number of messages at this point is always > 0.
self.inner.state.fetch_sub(1, SeqCst);
}
}
impl<A: Actor> Stream for AddressReceiver<A> {
type Item = Envelope<A>;
fn poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>> {
let this = self.get_mut();
match this.next_message() {
Poll::Ready(msg) => Poll::Ready(msg),
Poll::Pending => {
// There are no messages to read, in this case, park.
this.inner.recv_task.register(cx.waker());
// Check queue again after parking to prevent race condition:
// a message could be added to the queue after previous `next_message`
// before `register` call.
this.next_message()
}
}
}
}
impl<A: Actor> Drop for AddressReceiver<A> {
fn drop(&mut self) {
// close
self.inner.set_closed();
// Wake up any threads waiting as they'll see that we've closed the
// channel and will continue on their merry way.
while let Some(task) = unsafe { self.inner.parked_queue.pop_spin() } {
task.lock().notify();
}
// Drain the channel of all pending messages
loop {
match self.next_message() {
Poll::Ready(Some(_)) => {}
Poll::Ready(None) => break,
Poll::Pending => {
let state = decode_state(self.inner.state.load(SeqCst));
// If the channel is closed, then there is no need to park.
if state.is_closed() {
break;
}
// TODO: Spinning isn't ideal, it might be worth
// investigating using a condvar or some other strategy
// here. That said, if this case is hit, then another thread
// is about to push the value into the queue and this isn't
// the only spinlock in the impl right now.
thread::yield_now();
}
}
}
}
}
//
//
// ===== impl Inner =====
//
//
impl<A: Actor> Inner<A> {
// The return value is such that the total number of messages that can be
// enqueued into the channel will never exceed MAX_CAPACITY
fn max_senders(&self) -> usize {
MAX_CAPACITY - self.buffer.load(Relaxed)
}
// Clear `open` flag in the state, keep `num_messages` intact.
fn set_closed(&self) {
let curr = self.state.load(SeqCst);
if !decode_state(curr).is_open {
return;
}
self.state.fetch_and(!OPEN_MASK, SeqCst);
}
}
unsafe impl<A: Actor> Send for Inner<A> {}
unsafe impl<A: Actor> Sync for Inner<A> {}
//
//
// ===== Helpers =====
//
//
fn decode_state(num: usize) -> State {
State {
is_open: num & OPEN_MASK == OPEN_MASK,
num_messages: num & MAX_CAPACITY,
}
}
fn encode_state(state: &State) -> usize {
let mut num = state.num_messages;
if state.is_open {
num |= OPEN_MASK;
}
num
}
#[cfg(test)]
mod tests {
use std::time;
use super::*;
use crate::{address::queue::PopResult, prelude::*};
struct Act;
impl Actor for Act {
type Context = Context<Act>;
}
struct Ping;
impl Message for Ping {
type Result = ();
}
impl Handler<Ping> for Act {
type Result = ();
fn handle(&mut self, _: Ping, _: &mut Context<Act>) {}
}
#[test]
fn test_cap() {
System::new().block_on(async {
let (s1, mut recv) = channel::<Act>(1);
let s2 = recv.sender();
let arb = Arbiter::new();
arb.spawn_fn(move || {
let _ = s1.send(Ping);
});
thread::sleep(time::Duration::from_millis(100));
let arb2 = Arbiter::new();
arb2.spawn_fn(move || {
let _ = s2.send(Ping);
let _ = s2.send(Ping);
});
thread::sleep(time::Duration::from_millis(100));
let state = decode_state(recv.inner.state.load(SeqCst));
assert_eq!(state.num_messages, 2);
let p = loop {
match unsafe { recv.inner.parked_queue.pop() } {
PopResult::Data(task) => break Some(task),
PopResult::Empty => break None,
PopResult::Inconsistent => thread::yield_now(),
}
};
assert!(p.is_some());
recv.inner.parked_queue.push(p.unwrap());
recv.set_capacity(10);
thread::sleep(time::Duration::from_millis(100));
let state = decode_state(recv.inner.state.load(SeqCst));
assert_eq!(state.num_messages, 2);
let p = loop {
match unsafe { recv.inner.parked_queue.pop() } {
PopResult::Data(task) => break Some(task),
PopResult::Empty => break None,
PopResult::Inconsistent => thread::yield_now(),
}
};
assert!(p.is_none());
System::current().stop();
});
}
}