1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
use crate::backend::SimpleInput;
use actix_web::dev::ServiceRequest;
use actix_web::ResponseError;
use std::future::{ready, Ready};
use std::net::{AddrParseError, IpAddr, Ipv6Addr};
use std::time::Duration;
use thiserror::Error;

type CustomFn = Box<dyn Fn(&ServiceRequest) -> Result<String, actix_web::Error>>;

pub type SimpleInputFuture = Ready<Result<SimpleInput, actix_web::Error>>;

/// Utility to create a input function that produces a [SimpleInput].
///
/// You should take care to ensure that you are producing unique keys per backend.
///
/// This will not be of any use if you want to use dynamic interval/request policies
/// or perform an asynchronous option; you should instead write your own input function.
pub struct SimpleInputFunctionBuilder {
    interval: Duration,
    max_requests: u64,
    real_ip_key: bool,
    peer_ip_key: bool,
    path_key: bool,
    custom_key: Option<String>,
    custom_fn: Option<CustomFn>,
}

impl SimpleInputFunctionBuilder {
    pub fn new(interval: Duration, max_requests: u64) -> Self {
        Self {
            interval,
            max_requests,
            real_ip_key: false,
            peer_ip_key: false,
            path_key: false,
            custom_key: None,
            custom_fn: None,
        }
    }

    /// Adds the client's real IP to the rate limiting key.
    ///
    /// # Security
    ///
    /// This calls
    /// [ConnectionInfo::realip_remote_addr()](actix_web::dev::ConnectionInfo::realip_remote_addr)
    /// internally which is only suitable for Actix applications deployed behind a proxy that you
    /// control.
    ///
    /// # IPv6
    ///
    /// IPv6 addresses will be grouped into a single key per /64
    pub fn real_ip_key(mut self) -> Self {
        self.real_ip_key = true;
        self
    }

    /// Adds the connection peer IP to the rate limiting key.
    ///
    /// This is suitable when clients connect directly to the Actix application.
    ///
    /// # IPv6
    ///
    /// IPv6 addresses will be grouped into a single key per /64
    pub fn peer_ip_key(mut self) -> Self {
        self.peer_ip_key = true;
        self
    }

    /// Add the request path to the rate limiting key
    pub fn path_key(mut self) -> Self {
        self.path_key = true;
        self
    }

    /// Add a custom component to the rate limiting key
    pub fn custom_key(mut self, key: &str) -> Self {
        self.custom_key = Some(key.to_owned());
        self
    }

    /// Dynamically add a custom component to the rate limiting key
    pub fn custom_fn<F>(mut self, f: F) -> Self
    where
        F: Fn(&ServiceRequest) -> Result<String, actix_web::Error> + 'static,
    {
        self.custom_fn = Some(Box::new(f));
        self
    }

    pub fn build(self) -> impl Fn(&ServiceRequest) -> SimpleInputFuture + 'static {
        move |req| {
            ready((|| {
                let mut components = Vec::new();
                let info = req.connection_info();
                if let Some(custom) = &self.custom_key {
                    components.push(custom.clone());
                }
                if self.real_ip_key {
                    components.push(ip_key(info.realip_remote_addr().unwrap())?)
                }
                if self.peer_ip_key {
                    components.push(ip_key(info.peer_addr().unwrap())?)
                }
                if self.path_key {
                    components.push(req.path().to_owned());
                }
                if let Some(f) = &self.custom_fn {
                    components.push(f(req)?)
                }
                let key = components.join("-");

                Ok(SimpleInput {
                    interval: self.interval,
                    max_requests: self.max_requests,
                    key,
                })
            })())
        }
    }
}

#[derive(Debug, Error)]
enum Error {
    #[error("Unable to parse remote IP address: {0}")]
    InvalidIpError(
        #[source]
        #[from]
        AddrParseError,
    ),
}

impl ResponseError for Error {}

// Groups IPv6 addresses together, see:
// https://adam-p.ca/blog/2022/02/ipv6-rate-limiting/
// https://support.cloudflare.com/hc/en-us/articles/115001635128-Configuring-Cloudflare-Rate-Limiting
fn ip_key(ip_str: &str) -> Result<String, Error> {
    let ip = ip_str.parse::<IpAddr>()?;
    Ok(match ip {
        IpAddr::V4(v4) => v4.to_string(),
        IpAddr::V6(v6) => {
            if let Some(v4) = v6.to_ipv4() {
                return Ok(v4.to_string());
            }
            let zeroes = [0u16; 4];
            let concat = [&v6.segments()[0..4], &zeroes].concat();
            let concat: [u16; 8] = concat.try_into().unwrap();
            let subnet = Ipv6Addr::from(concat);
            format!("{}/64", subnet)
        }
    })
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_ip_key() {
        // Check that IPv4 addresses are preserved
        assert_eq!(ip_key("142.250.187.206").unwrap(), "142.250.187.206");
        // Check that IPv4 mapped addresses are preserved
        assert_eq!(ip_key("::FFFF:142.250.187.206").unwrap(), "142.250.187.206");
        // Check that IPv6 addresses are grouped into /64 subnets
        assert_eq!(
            ip_key("2a00:1450:4009:81f::200e").unwrap(),
            "2a00:1450:4009:81f::/64"
        );
    }
}