1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
//! Types and traits that facilitate error recovery.
//!
//! *“Do you find coming to terms with the mindless tedium of it all presents an interesting challenge?”*

use super::*;

/// A trait implemented by error recovery strategies.
pub trait Strategy<I: Clone, O, E: Error<I>> {
    /// Recover from a parsing failure.
    fn recover<D: Debugger, P: Parser<I, O, Error = E>>(
        &self,
        recovered_errors: Vec<Located<I, P::Error>>,
        fatal_error: Located<I, P::Error>,
        parser: P,
        debugger: &mut D,
        stream: &mut StreamOf<I, P::Error>,
    ) -> PResult<I, O, P::Error>;
}

/// See [`skip_then_retry_until`].
#[must_use]
#[derive(Copy, Clone)]
pub struct SkipThenRetryUntil<I, const N: usize>(
    pub(crate) [I; N],
    pub(crate) bool,
    pub(crate) bool,
);

impl<I, const N: usize> SkipThenRetryUntil<I, N> {
    /// Alters this recovery strategy so that the first token will always be skipped.
    ///
    /// This is useful when the input being searched for also appears at the beginning of the pattern that failed to
    /// parse.
    pub fn skip_start(self) -> Self {
        Self(self.0, self.1, true)
    }

    /// Alters this recovery strategy so that the synchronisation token will be consumed during recovery.
    ///
    /// This is useful when the input being searched for is a delimiter of a prior pattern rather than the start of a
    /// new pattern and hence is no longer important once recovery has occurred.
    pub fn consume_end(self) -> Self {
        Self(self.0, true, self.2)
    }
}

impl<I: Clone + PartialEq, O, E: Error<I>, const N: usize> Strategy<I, O, E>
    for SkipThenRetryUntil<I, N>
{
    fn recover<D: Debugger, P: Parser<I, O, Error = E>>(
        &self,
        a_errors: Vec<Located<I, P::Error>>,
        a_err: Located<I, P::Error>,
        parser: P,
        debugger: &mut D,
        stream: &mut StreamOf<I, P::Error>,
    ) -> PResult<I, O, P::Error> {
        if self.2 {
            let _ = stream.next();
        }
        loop {
            #[allow(deprecated)]
            let (mut errors, res) = stream.try_parse(|stream| {
                #[allow(deprecated)]
                debugger.invoke(&parser, stream)
            });
            if let Ok(out) = res {
                errors.push(a_err);
                break (errors, Ok(out));
            }
            #[allow(clippy::blocks_in_if_conditions)]
            if !stream.attempt(
                |stream| match stream.next().2.map(|tok| self.0.contains(&tok)) {
                    Some(true) => (self.1, false),
                    Some(false) => (true, true),
                    None => (false, false),
                },
            ) {
                break (a_errors, Err(a_err));
            }
        }
    }
}

/// A recovery mode that simply skips to the next input on parser failure and tries again, until reaching one of
/// several inputs.
///
/// Also see [`SkipThenRetryUntil::consume_end`].
///
/// This strategy is very 'stupid' and can result in very poor error generation in some languages. Place this strategy
/// after others as a last resort, and be careful about over-using it.
pub fn skip_then_retry_until<I, const N: usize>(until: [I; N]) -> SkipThenRetryUntil<I, N> {
    SkipThenRetryUntil(until, false, true)
}

/// See [`skip_until`].
#[must_use]
#[derive(Copy, Clone)]
pub struct SkipUntil<I, F, const N: usize>(
    pub(crate) [I; N],
    pub(crate) F,
    pub(crate) bool,
    pub(crate) bool,
);

impl<I, F, const N: usize> SkipUntil<I, F, N> {
    /// Alters this recovery strategy so that the first token will always be skipped.
    ///
    /// This is useful when the input being searched for also appears at the beginning of the pattern that failed to
    /// parse.
    pub fn skip_start(self) -> Self {
        Self(self.0, self.1, self.2, true)
    }

    /// Alters this recovery strategy so that the synchronisation token will be consumed during recovery.
    ///
    /// This is useful when the input being searched for is a delimiter of a prior pattern rather than the start of a
    /// new pattern and hence is no longer important once recovery has occurred.
    pub fn consume_end(self) -> Self {
        Self(self.0, self.1, true, self.3)
    }
}

impl<I: Clone + PartialEq, O, F: Fn(E::Span) -> O, E: Error<I>, const N: usize> Strategy<I, O, E>
    for SkipUntil<I, F, N>
{
    fn recover<D: Debugger, P: Parser<I, O, Error = E>>(
        &self,
        mut a_errors: Vec<Located<I, P::Error>>,
        a_err: Located<I, P::Error>,
        _parser: P,
        _debugger: &mut D,
        stream: &mut StreamOf<I, P::Error>,
    ) -> PResult<I, O, P::Error> {
        let pre_state = stream.save();
        if self.3 {
            let _ = stream.next();
        }
        a_errors.push(a_err);
        loop {
            match stream.attempt(|stream| {
                let (at, span, tok) = stream.next();
                match tok.map(|tok| self.0.contains(&tok)) {
                    Some(true) => (self.2, Ok(true)),
                    Some(false) => (true, Ok(false)),
                    None => (true, Err((at, span))),
                }
            }) {
                Ok(true) => break (a_errors, Ok(((self.1)(stream.span_since(pre_state)), None))),
                Ok(false) => {}
                Err(_) if stream.save() > pre_state => {
                    break (a_errors, Ok(((self.1)(stream.span_since(pre_state)), None)))
                }
                Err((at, span)) => {
                    break (
                        a_errors,
                        Err(Located::at(
                            at,
                            E::expected_input_found(span, self.0.iter().cloned().map(Some), None),
                        )),
                    )
                }
            }
        }
    }
}

/// A recovery mode that skips input until one of several inputs is found.
///
/// Also see [`SkipUntil::consume_end`].
///
/// This strategy is very 'stupid' and can result in very poor error generation in some languages. Place this strategy
/// after others as a last resort, and be careful about over-using it.
pub fn skip_until<I, F, const N: usize>(until: [I; N], fallback: F) -> SkipUntil<I, F, N> {
    SkipUntil(until, fallback, false, false)
}

/// See [`nested_delimiters`].
#[must_use]
#[derive(Copy, Clone)]
pub struct NestedDelimiters<I, F, const N: usize>(
    pub(crate) I,
    pub(crate) I,
    pub(crate) [(I, I); N],
    pub(crate) F,
);

impl<I: Clone + PartialEq, O, F: Fn(E::Span) -> O, E: Error<I>, const N: usize> Strategy<I, O, E>
    for NestedDelimiters<I, F, N>
{
    // This looks like something weird with clippy, it warns in a weird spot and isn't fixed by
    // marking it at the spot.
    #[allow(clippy::blocks_in_if_conditions)]
    fn recover<D: Debugger, P: Parser<I, O, Error = E>>(
        &self,
        mut a_errors: Vec<Located<I, P::Error>>,
        a_err: Located<I, P::Error>,
        _parser: P,
        _debugger: &mut D,
        stream: &mut StreamOf<I, P::Error>,
    ) -> PResult<I, O, P::Error> {
        let mut balance = 0;
        let mut balance_others = [0; N];
        let mut starts = Vec::new();
        let mut error = None;
        let pre_state = stream.save();
        let recovered = loop {
            if match stream.next() {
                (_, span, Some(t)) if t == self.0 => {
                    balance += 1;
                    starts.push(span);
                    true
                }
                (_, _, Some(t)) if t == self.1 => {
                    balance -= 1;
                    starts.pop();
                    true
                }
                (at, span, Some(t)) => {
                    for (balance_other, others) in balance_others.iter_mut().zip(self.2.iter()) {
                        if t == others.0 {
                            *balance_other += 1;
                        } else if t == others.1 {
                            *balance_other -= 1;

                            if *balance_other < 0 && balance == 1 {
                                // stream.revert(pre_state);
                                error.get_or_insert_with(|| {
                                    Located::at(
                                        at,
                                        P::Error::unclosed_delimiter(
                                            starts.pop().unwrap(),
                                            self.0.clone(),
                                            span.clone(),
                                            self.1.clone(),
                                            Some(t.clone()),
                                        ),
                                    )
                                });
                            }
                        }
                    }
                    false
                }
                (at, span, None) => {
                    if balance > 0 && balance == 1 {
                        error.get_or_insert_with(|| match starts.pop() {
                            Some(start) => Located::at(
                                at,
                                P::Error::unclosed_delimiter(
                                    start,
                                    self.0.clone(),
                                    span,
                                    self.1.clone(),
                                    None,
                                ),
                            ),
                            None => Located::at(
                                at,
                                P::Error::expected_input_found(
                                    span,
                                    Some(Some(self.1.clone())),
                                    None,
                                ),
                            ),
                        });
                    }
                    break false;
                }
            } {
                match balance.cmp(&0) {
                    Ordering::Equal => break true,
                    // The end of a delimited section is not a valid recovery pattern
                    Ordering::Less => break false,
                    Ordering::Greater => (),
                }
            } else if balance == 0 {
                // A non-delimiter input before anything else is not a valid recovery pattern
                break false;
            }
        };

        if let Some(e) = error {
            a_errors.push(e);
        }

        if recovered {
            if a_errors.last().map_or(true, |e| a_err.at < e.at) {
                a_errors.push(a_err);
            }
            (a_errors, Ok(((self.3)(stream.span_since(pre_state)), None)))
        } else {
            (a_errors, Err(a_err))
        }
    }
}

/// A recovery strategy that searches for a start and end delimiter, respecting nesting.
///
/// It is possible to specify additional delimiter pairs that are valid in the pattern's context for better errors. For
/// example, you might want to also specify `[('[', ']'), ('{', '}')]` when recovering a parenthesised expression as
/// this can aid in detecting delimiter mismatches.
///
/// A function that generates a fallback output on recovery is also required.
pub fn nested_delimiters<I: PartialEq, F, const N: usize>(
    start: I,
    end: I,
    others: [(I, I); N],
    fallback: F,
) -> NestedDelimiters<I, F, N> {
    assert!(
        start != end,
        "Start and end delimiters cannot be the same when using `NestedDelimiters`"
    );
    NestedDelimiters(start, end, others, fallback)
}

/// See [`skip_parser`].
#[derive(Copy, Clone)]
pub struct SkipParser<R>(pub(crate) R);

impl<I: Clone + PartialEq, O, R: Parser<I, O, Error = E>, E: Error<I>> Strategy<I, O, E>
    for SkipParser<R>
{
    fn recover<D: Debugger, P: Parser<I, O, Error = E>>(
        &self,
        mut a_errors: Vec<Located<I, P::Error>>,
        a_err: Located<I, P::Error>,
        _parser: P,
        debugger: &mut D,
        stream: &mut StreamOf<I, P::Error>,
    ) -> PResult<I, O, P::Error> {
        a_errors.push(a_err);

        let (mut errors, res) = self.0.parse_inner(debugger, stream);
        a_errors.append(&mut errors);
        (a_errors, res)
    }
}

/// A recovery mode that applies the provided recovery parser to determine the content to skip.
///
/// ```
/// # use chumsky::prelude::*;
/// #[derive(Clone, Debug, PartialEq, Eq, Hash)]
/// enum Token {
///     GoodKeyword,
///     BadKeyword,
///     Newline,
/// }
///
/// #[derive(Clone, Debug, PartialEq, Eq, Hash)]
/// enum AST {
///     GoodLine,
///     Error,
/// }
///
/// // The happy path...
/// let goodline = just::<Token, _, Simple<_>>(Token::GoodKeyword)
///     .ignore_then(none_of(Token::Newline).repeated().to(AST::GoodLine))
///     .then_ignore(just(Token::Newline));
///
/// // If it fails, swallow everything up to a newline, but only if the line
/// // didn't contain BadKeyword which marks an alternative parse route that
/// // we want to accept instead.
/// let goodline_with_recovery = goodline.recover_with(skip_parser(
///     none_of([Token::Newline, Token::BadKeyword])
///         .repeated()
///         .then_ignore(just(Token::Newline))
///         .to(AST::Error),
/// ));
/// ```

pub fn skip_parser<R>(recovery_parser: R) -> SkipParser<R> {
    SkipParser(recovery_parser)
}

/// A parser that includes a fallback recovery strategy should parsing result in an error.
#[must_use]
#[derive(Copy, Clone)]
pub struct Recovery<A, S>(pub(crate) A, pub(crate) S);

impl<I: Clone, O, A: Parser<I, O, Error = E>, S: Strategy<I, O, E>, E: Error<I>> Parser<I, O>
    for Recovery<A, S>
{
    type Error = E;

    fn parse_inner<D: Debugger>(
        &self,
        debugger: &mut D,
        stream: &mut StreamOf<I, E>,
    ) -> PResult<I, O, E> {
        match stream.try_parse(|stream| {
            #[allow(deprecated)]
            debugger.invoke(&self.0, stream)
        }) {
            (a_errors, Ok(a_out)) => (a_errors, Ok(a_out)),
            (a_errors, Err(a_err)) => self.1.recover(a_errors, a_err, &self.0, debugger, stream),
        }
    }

    fn parse_inner_verbose(&self, d: &mut Verbose, s: &mut StreamOf<I, E>) -> PResult<I, O, E> {
        #[allow(deprecated)]
        self.parse_inner(d, s)
    }
    fn parse_inner_silent(&self, d: &mut Silent, s: &mut StreamOf<I, E>) -> PResult<I, O, E> {
        #[allow(deprecated)]
        self.parse_inner(d, s)
    }
}

#[cfg(test)]
mod tests {
    use crate::error::Cheap;
    use crate::prelude::*;

    #[test]
    fn recover_with_skip_then_retry_until() {
        let parser = just::<_, _, Cheap<_>>('a')
            .recover_with(skip_then_retry_until([',']))
            .separated_by(just(','));
        {
            let (result, errors) = parser.parse_recovery("a,a,2a,a");
            assert_eq!(result, Some(vec!['a', 'a', 'a', 'a']));
            assert_eq!(errors.len(), 1)
        }
        {
            let (result, errors) = parser.parse_recovery("a,a,2 a,a");
            assert_eq!(result, Some(vec!['a', 'a', 'a', 'a']));
            assert_eq!(errors.len(), 1)
        }
        {
            let (result, errors) = parser.parse_recovery("a,a,2  a,a");
            assert_eq!(result, Some(vec!['a', 'a', 'a', 'a']));
            assert_eq!(errors.len(), 1)
        }
    }

    #[test]
    fn until_nothing() {
        #[derive(Debug, Clone, Copy, PartialEq)]
        pub enum Token {
            Foo,
            Bar,
        }

        fn lexer() -> impl Parser<char, Token, Error = Simple<char>> {
            let foo = just("foo").to(Token::Foo);
            let bar = just("bar").to(Token::Bar);

            choice((foo, bar)).recover_with(skip_then_retry_until([]))
        }

        let (result, errors) = lexer().parse_recovery("baz");
        assert_eq!(result, None);
        assert_eq!(errors.len(), 1);
    }
}