indexmap/map.rs
1//! [`IndexMap`] is a hash table where the iteration order of the key-value
2//! pairs is independent of the hash values of the keys.
3
4mod core;
5mod iter;
6mod mutable;
7mod slice;
8
9#[cfg(feature = "serde")]
10#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
11pub mod serde_seq;
12
13#[cfg(test)]
14mod tests;
15
16pub use self::core::raw_entry_v1::{self, RawEntryApiV1};
17pub use self::core::{Entry, IndexedEntry, OccupiedEntry, VacantEntry};
18pub use self::iter::{
19 Drain, ExtractIf, IntoIter, IntoKeys, IntoValues, Iter, IterMut, IterMut2, Keys, Splice,
20 Values, ValuesMut,
21};
22pub use self::mutable::MutableEntryKey;
23pub use self::mutable::MutableKeys;
24pub use self::slice::Slice;
25
26#[cfg(feature = "rayon")]
27pub use crate::rayon::map as rayon;
28
29use ::core::cmp::Ordering;
30use ::core::fmt;
31use ::core::hash::{BuildHasher, Hash, Hasher};
32use ::core::mem;
33use ::core::ops::{Index, IndexMut, RangeBounds};
34use alloc::boxed::Box;
35use alloc::vec::Vec;
36
37#[cfg(feature = "std")]
38use std::collections::hash_map::RandomState;
39
40pub(crate) use self::core::{ExtractCore, IndexMapCore};
41use crate::util::{third, try_simplify_range};
42use crate::{Bucket, Equivalent, GetDisjointMutError, HashValue, TryReserveError};
43
44/// A hash table where the iteration order of the key-value pairs is independent
45/// of the hash values of the keys.
46///
47/// The interface is closely compatible with the standard
48/// [`HashMap`][std::collections::HashMap],
49/// but also has additional features.
50///
51/// # Order
52///
53/// The key-value pairs have a consistent order that is determined by
54/// the sequence of insertion and removal calls on the map. The order does
55/// not depend on the keys or the hash function at all.
56///
57/// All iterators traverse the map in *the order*.
58///
59/// The insertion order is preserved, with **notable exceptions** like the
60/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
61/// Methods such as [`.sort_by()`][Self::sort_by] of
62/// course result in a new order, depending on the sorting order.
63///
64/// # Indices
65///
66/// The key-value pairs are indexed in a compact range without holes in the
67/// range `0..self.len()`. For example, the method `.get_full` looks up the
68/// index for a key, and the method `.get_index` looks up the key-value pair by
69/// index.
70///
71/// # Examples
72///
73/// ```
74/// use indexmap::IndexMap;
75///
76/// // count the frequency of each letter in a sentence.
77/// let mut letters = IndexMap::new();
78/// for ch in "a short treatise on fungi".chars() {
79/// *letters.entry(ch).or_insert(0) += 1;
80/// }
81///
82/// assert_eq!(letters[&'s'], 2);
83/// assert_eq!(letters[&'t'], 3);
84/// assert_eq!(letters[&'u'], 1);
85/// assert_eq!(letters.get(&'y'), None);
86/// ```
87#[cfg(feature = "std")]
88pub struct IndexMap<K, V, S = RandomState> {
89 pub(crate) core: IndexMapCore<K, V>,
90 hash_builder: S,
91}
92#[cfg(not(feature = "std"))]
93pub struct IndexMap<K, V, S> {
94 pub(crate) core: IndexMapCore<K, V>,
95 hash_builder: S,
96}
97
98impl<K, V, S> Clone for IndexMap<K, V, S>
99where
100 K: Clone,
101 V: Clone,
102 S: Clone,
103{
104 fn clone(&self) -> Self {
105 IndexMap {
106 core: self.core.clone(),
107 hash_builder: self.hash_builder.clone(),
108 }
109 }
110
111 fn clone_from(&mut self, other: &Self) {
112 self.core.clone_from(&other.core);
113 self.hash_builder.clone_from(&other.hash_builder);
114 }
115}
116
117impl<K, V, S> fmt::Debug for IndexMap<K, V, S>
118where
119 K: fmt::Debug,
120 V: fmt::Debug,
121{
122 #[cfg(not(feature = "test_debug"))]
123 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
124 f.debug_map().entries(self.iter()).finish()
125 }
126
127 #[cfg(feature = "test_debug")]
128 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
129 // Let the inner `IndexMapCore` print all of its details
130 f.debug_struct("IndexMap")
131 .field("core", &self.core)
132 .finish()
133 }
134}
135
136#[cfg(feature = "std")]
137#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
138impl<K, V> IndexMap<K, V> {
139 /// Create a new map. (Does not allocate.)
140 #[inline]
141 pub fn new() -> Self {
142 Self::with_capacity(0)
143 }
144
145 /// Create a new map with capacity for `n` key-value pairs. (Does not
146 /// allocate if `n` is zero.)
147 ///
148 /// Computes in **O(n)** time.
149 #[inline]
150 pub fn with_capacity(n: usize) -> Self {
151 Self::with_capacity_and_hasher(n, <_>::default())
152 }
153}
154
155impl<K, V, S> IndexMap<K, V, S> {
156 /// Create a new map with capacity for `n` key-value pairs. (Does not
157 /// allocate if `n` is zero.)
158 ///
159 /// Computes in **O(n)** time.
160 #[inline]
161 pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
162 if n == 0 {
163 Self::with_hasher(hash_builder)
164 } else {
165 IndexMap {
166 core: IndexMapCore::with_capacity(n),
167 hash_builder,
168 }
169 }
170 }
171
172 /// Create a new map with `hash_builder`.
173 ///
174 /// This function is `const`, so it
175 /// can be called in `static` contexts.
176 pub const fn with_hasher(hash_builder: S) -> Self {
177 IndexMap {
178 core: IndexMapCore::new(),
179 hash_builder,
180 }
181 }
182
183 #[inline]
184 pub(crate) fn into_entries(self) -> Vec<Bucket<K, V>> {
185 self.core.into_entries()
186 }
187
188 #[inline]
189 pub(crate) fn as_entries(&self) -> &[Bucket<K, V>] {
190 self.core.as_entries()
191 }
192
193 #[inline]
194 pub(crate) fn as_entries_mut(&mut self) -> &mut [Bucket<K, V>] {
195 self.core.as_entries_mut()
196 }
197
198 pub(crate) fn with_entries<F>(&mut self, f: F)
199 where
200 F: FnOnce(&mut [Bucket<K, V>]),
201 {
202 self.core.with_entries(f);
203 }
204
205 /// Return the number of elements the map can hold without reallocating.
206 ///
207 /// This number is a lower bound; the map might be able to hold more,
208 /// but is guaranteed to be able to hold at least this many.
209 ///
210 /// Computes in **O(1)** time.
211 pub fn capacity(&self) -> usize {
212 self.core.capacity()
213 }
214
215 /// Return a reference to the map's `BuildHasher`.
216 pub fn hasher(&self) -> &S {
217 &self.hash_builder
218 }
219
220 /// Return the number of key-value pairs in the map.
221 ///
222 /// Computes in **O(1)** time.
223 #[inline]
224 pub fn len(&self) -> usize {
225 self.core.len()
226 }
227
228 /// Returns true if the map contains no elements.
229 ///
230 /// Computes in **O(1)** time.
231 #[inline]
232 pub fn is_empty(&self) -> bool {
233 self.len() == 0
234 }
235
236 /// Return an iterator over the key-value pairs of the map, in their order
237 pub fn iter(&self) -> Iter<'_, K, V> {
238 Iter::new(self.as_entries())
239 }
240
241 /// Return an iterator over the key-value pairs of the map, in their order
242 pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
243 IterMut::new(self.as_entries_mut())
244 }
245
246 /// Return an iterator over the keys of the map, in their order
247 pub fn keys(&self) -> Keys<'_, K, V> {
248 Keys::new(self.as_entries())
249 }
250
251 /// Return an owning iterator over the keys of the map, in their order
252 pub fn into_keys(self) -> IntoKeys<K, V> {
253 IntoKeys::new(self.into_entries())
254 }
255
256 /// Return an iterator over the values of the map, in their order
257 pub fn values(&self) -> Values<'_, K, V> {
258 Values::new(self.as_entries())
259 }
260
261 /// Return an iterator over mutable references to the values of the map,
262 /// in their order
263 pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
264 ValuesMut::new(self.as_entries_mut())
265 }
266
267 /// Return an owning iterator over the values of the map, in their order
268 pub fn into_values(self) -> IntoValues<K, V> {
269 IntoValues::new(self.into_entries())
270 }
271
272 /// Remove all key-value pairs in the map, while preserving its capacity.
273 ///
274 /// Computes in **O(n)** time.
275 pub fn clear(&mut self) {
276 self.core.clear();
277 }
278
279 /// Shortens the map, keeping the first `len` elements and dropping the rest.
280 ///
281 /// If `len` is greater than the map's current length, this has no effect.
282 pub fn truncate(&mut self, len: usize) {
283 self.core.truncate(len);
284 }
285
286 /// Clears the `IndexMap` in the given index range, returning those
287 /// key-value pairs as a drain iterator.
288 ///
289 /// The range may be any type that implements [`RangeBounds<usize>`],
290 /// including all of the `std::ops::Range*` types, or even a tuple pair of
291 /// `Bound` start and end values. To drain the map entirely, use `RangeFull`
292 /// like `map.drain(..)`.
293 ///
294 /// This shifts down all entries following the drained range to fill the
295 /// gap, and keeps the allocated memory for reuse.
296 ///
297 /// ***Panics*** if the starting point is greater than the end point or if
298 /// the end point is greater than the length of the map.
299 #[track_caller]
300 pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V>
301 where
302 R: RangeBounds<usize>,
303 {
304 Drain::new(self.core.drain(range))
305 }
306
307 /// Creates an iterator which uses a closure to determine if an element should be removed,
308 /// for all elements in the given range.
309 ///
310 /// If the closure returns true, the element is removed from the map and yielded.
311 /// If the closure returns false, or panics, the element remains in the map and will not be
312 /// yielded.
313 ///
314 /// Note that `extract_if` lets you mutate every value in the filter closure, regardless of
315 /// whether you choose to keep or remove it.
316 ///
317 /// The range may be any type that implements [`RangeBounds<usize>`],
318 /// including all of the `std::ops::Range*` types, or even a tuple pair of
319 /// `Bound` start and end values. To check the entire map, use `RangeFull`
320 /// like `map.extract_if(.., predicate)`.
321 ///
322 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
323 /// or the iteration short-circuits, then the remaining elements will be retained.
324 /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
325 ///
326 /// [`retain`]: IndexMap::retain
327 ///
328 /// ***Panics*** if the starting point is greater than the end point or if
329 /// the end point is greater than the length of the map.
330 ///
331 /// # Examples
332 ///
333 /// Splitting a map into even and odd keys, reusing the original map:
334 ///
335 /// ```
336 /// use indexmap::IndexMap;
337 ///
338 /// let mut map: IndexMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
339 /// let extracted: IndexMap<i32, i32> = map.extract_if(.., |k, _v| k % 2 == 0).collect();
340 ///
341 /// let evens = extracted.keys().copied().collect::<Vec<_>>();
342 /// let odds = map.keys().copied().collect::<Vec<_>>();
343 ///
344 /// assert_eq!(evens, vec![0, 2, 4, 6]);
345 /// assert_eq!(odds, vec![1, 3, 5, 7]);
346 /// ```
347 #[track_caller]
348 pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, K, V, F>
349 where
350 F: FnMut(&K, &mut V) -> bool,
351 R: RangeBounds<usize>,
352 {
353 ExtractIf::new(&mut self.core, range, pred)
354 }
355
356 /// Splits the collection into two at the given index.
357 ///
358 /// Returns a newly allocated map containing the elements in the range
359 /// `[at, len)`. After the call, the original map will be left containing
360 /// the elements `[0, at)` with its previous capacity unchanged.
361 ///
362 /// ***Panics*** if `at > len`.
363 #[track_caller]
364 pub fn split_off(&mut self, at: usize) -> Self
365 where
366 S: Clone,
367 {
368 Self {
369 core: self.core.split_off(at),
370 hash_builder: self.hash_builder.clone(),
371 }
372 }
373
374 /// Reserve capacity for `additional` more key-value pairs.
375 ///
376 /// Computes in **O(n)** time.
377 pub fn reserve(&mut self, additional: usize) {
378 self.core.reserve(additional);
379 }
380
381 /// Reserve capacity for `additional` more key-value pairs, without over-allocating.
382 ///
383 /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
384 /// frequent re-allocations. However, the underlying data structures may still have internal
385 /// capacity requirements, and the allocator itself may give more space than requested, so this
386 /// cannot be relied upon to be precisely minimal.
387 ///
388 /// Computes in **O(n)** time.
389 pub fn reserve_exact(&mut self, additional: usize) {
390 self.core.reserve_exact(additional);
391 }
392
393 /// Try to reserve capacity for `additional` more key-value pairs.
394 ///
395 /// Computes in **O(n)** time.
396 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
397 self.core.try_reserve(additional)
398 }
399
400 /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating.
401 ///
402 /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
403 /// frequent re-allocations. However, the underlying data structures may still have internal
404 /// capacity requirements, and the allocator itself may give more space than requested, so this
405 /// cannot be relied upon to be precisely minimal.
406 ///
407 /// Computes in **O(n)** time.
408 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
409 self.core.try_reserve_exact(additional)
410 }
411
412 /// Shrink the capacity of the map as much as possible.
413 ///
414 /// Computes in **O(n)** time.
415 pub fn shrink_to_fit(&mut self) {
416 self.core.shrink_to(0);
417 }
418
419 /// Shrink the capacity of the map with a lower limit.
420 ///
421 /// Computes in **O(n)** time.
422 pub fn shrink_to(&mut self, min_capacity: usize) {
423 self.core.shrink_to(min_capacity);
424 }
425}
426
427impl<K, V, S> IndexMap<K, V, S>
428where
429 K: Hash + Eq,
430 S: BuildHasher,
431{
432 /// Insert a key-value pair in the map.
433 ///
434 /// If an equivalent key already exists in the map: the key remains and
435 /// retains in its place in the order, its corresponding value is updated
436 /// with `value`, and the older value is returned inside `Some(_)`.
437 ///
438 /// If no equivalent key existed in the map: the new key-value pair is
439 /// inserted, last in order, and `None` is returned.
440 ///
441 /// Computes in **O(1)** time (amortized average).
442 ///
443 /// See also [`entry`][Self::entry] if you want to insert *or* modify,
444 /// or [`insert_full`][Self::insert_full] if you need to get the index of
445 /// the corresponding key-value pair.
446 pub fn insert(&mut self, key: K, value: V) -> Option<V> {
447 self.insert_full(key, value).1
448 }
449
450 /// Insert a key-value pair in the map, and get their index.
451 ///
452 /// If an equivalent key already exists in the map: the key remains and
453 /// retains in its place in the order, its corresponding value is updated
454 /// with `value`, and the older value is returned inside `(index, Some(_))`.
455 ///
456 /// If no equivalent key existed in the map: the new key-value pair is
457 /// inserted, last in order, and `(index, None)` is returned.
458 ///
459 /// Computes in **O(1)** time (amortized average).
460 ///
461 /// See also [`entry`][Self::entry] if you want to insert *or* modify.
462 pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) {
463 let hash = self.hash(&key);
464 self.core.insert_full(hash, key, value)
465 }
466
467 /// Insert a key-value pair in the map at its ordered position among sorted keys.
468 ///
469 /// This is equivalent to finding the position with
470 /// [`binary_search_keys`][Self::binary_search_keys], then either updating
471 /// it or calling [`insert_before`][Self::insert_before] for a new key.
472 ///
473 /// If the sorted key is found in the map, its corresponding value is
474 /// updated with `value`, and the older value is returned inside
475 /// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at
476 /// the sorted position, and `(index, None)` is returned.
477 ///
478 /// If the existing keys are **not** already sorted, then the insertion
479 /// index is unspecified (like [`slice::binary_search`]), but the key-value
480 /// pair is moved to or inserted at that position regardless.
481 ///
482 /// Computes in **O(n)** time (average). Instead of repeating calls to
483 /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
484 /// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys]
485 /// or [`sort_unstable_keys`][Self::sort_unstable_keys] once.
486 pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>)
487 where
488 K: Ord,
489 {
490 match self.binary_search_keys(&key) {
491 Ok(i) => (i, Some(mem::replace(&mut self[i], value))),
492 Err(i) => self.insert_before(i, key, value),
493 }
494 }
495
496 /// Insert a key-value pair in the map before the entry at the given index, or at the end.
497 ///
498 /// If an equivalent key already exists in the map: the key remains and
499 /// is moved to the new position in the map, its corresponding value is updated
500 /// with `value`, and the older value is returned inside `Some(_)`. The returned index
501 /// will either be the given index or one less, depending on how the entry moved.
502 /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
503 ///
504 /// If no equivalent key existed in the map: the new key-value pair is
505 /// inserted exactly at the given index, and `None` is returned.
506 ///
507 /// ***Panics*** if `index` is out of bounds.
508 /// Valid indices are `0..=map.len()` (inclusive).
509 ///
510 /// Computes in **O(n)** time (average).
511 ///
512 /// See also [`entry`][Self::entry] if you want to insert *or* modify,
513 /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
514 ///
515 /// # Examples
516 ///
517 /// ```
518 /// use indexmap::IndexMap;
519 /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
520 ///
521 /// // The new key '*' goes exactly at the given index.
522 /// assert_eq!(map.get_index_of(&'*'), None);
523 /// assert_eq!(map.insert_before(10, '*', ()), (10, None));
524 /// assert_eq!(map.get_index_of(&'*'), Some(10));
525 ///
526 /// // Moving the key 'a' up will shift others down, so this moves *before* 10 to index 9.
527 /// assert_eq!(map.insert_before(10, 'a', ()), (9, Some(())));
528 /// assert_eq!(map.get_index_of(&'a'), Some(9));
529 /// assert_eq!(map.get_index_of(&'*'), Some(10));
530 ///
531 /// // Moving the key 'z' down will shift others up, so this moves to exactly 10.
532 /// assert_eq!(map.insert_before(10, 'z', ()), (10, Some(())));
533 /// assert_eq!(map.get_index_of(&'z'), Some(10));
534 /// assert_eq!(map.get_index_of(&'*'), Some(11));
535 ///
536 /// // Moving or inserting before the endpoint is also valid.
537 /// assert_eq!(map.len(), 27);
538 /// assert_eq!(map.insert_before(map.len(), '*', ()), (26, Some(())));
539 /// assert_eq!(map.get_index_of(&'*'), Some(26));
540 /// assert_eq!(map.insert_before(map.len(), '+', ()), (27, None));
541 /// assert_eq!(map.get_index_of(&'+'), Some(27));
542 /// assert_eq!(map.len(), 28);
543 /// ```
544 #[track_caller]
545 pub fn insert_before(&mut self, mut index: usize, key: K, value: V) -> (usize, Option<V>) {
546 let len = self.len();
547
548 assert!(
549 index <= len,
550 "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
551 );
552
553 match self.entry(key) {
554 Entry::Occupied(mut entry) => {
555 if index > entry.index() {
556 // Some entries will shift down when this one moves up,
557 // so "insert before index" becomes "move to index - 1",
558 // keeping the entry at the original index unmoved.
559 index -= 1;
560 }
561 let old = mem::replace(entry.get_mut(), value);
562 entry.move_index(index);
563 (index, Some(old))
564 }
565 Entry::Vacant(entry) => {
566 entry.shift_insert(index, value);
567 (index, None)
568 }
569 }
570 }
571
572 /// Insert a key-value pair in the map at the given index.
573 ///
574 /// If an equivalent key already exists in the map: the key remains and
575 /// is moved to the given index in the map, its corresponding value is updated
576 /// with `value`, and the older value is returned inside `Some(_)`.
577 /// Note that existing entries **cannot** be moved to `index == map.len()`!
578 /// (See [`insert_before`](Self::insert_before) for different behavior here.)
579 ///
580 /// If no equivalent key existed in the map: the new key-value pair is
581 /// inserted at the given index, and `None` is returned.
582 ///
583 /// ***Panics*** if `index` is out of bounds.
584 /// Valid indices are `0..map.len()` (exclusive) when moving an existing entry, or
585 /// `0..=map.len()` (inclusive) when inserting a new key.
586 ///
587 /// Computes in **O(n)** time (average).
588 ///
589 /// See also [`entry`][Self::entry] if you want to insert *or* modify,
590 /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
591 ///
592 /// # Examples
593 ///
594 /// ```
595 /// use indexmap::IndexMap;
596 /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
597 ///
598 /// // The new key '*' goes exactly at the given index.
599 /// assert_eq!(map.get_index_of(&'*'), None);
600 /// assert_eq!(map.shift_insert(10, '*', ()), None);
601 /// assert_eq!(map.get_index_of(&'*'), Some(10));
602 ///
603 /// // Moving the key 'a' up to 10 will shift others down, including the '*' that was at 10.
604 /// assert_eq!(map.shift_insert(10, 'a', ()), Some(()));
605 /// assert_eq!(map.get_index_of(&'a'), Some(10));
606 /// assert_eq!(map.get_index_of(&'*'), Some(9));
607 ///
608 /// // Moving the key 'z' down to 9 will shift others up, including the '*' that was at 9.
609 /// assert_eq!(map.shift_insert(9, 'z', ()), Some(()));
610 /// assert_eq!(map.get_index_of(&'z'), Some(9));
611 /// assert_eq!(map.get_index_of(&'*'), Some(10));
612 ///
613 /// // Existing keys can move to len-1 at most, but new keys can insert at the endpoint.
614 /// assert_eq!(map.len(), 27);
615 /// assert_eq!(map.shift_insert(map.len() - 1, '*', ()), Some(()));
616 /// assert_eq!(map.get_index_of(&'*'), Some(26));
617 /// assert_eq!(map.shift_insert(map.len(), '+', ()), None);
618 /// assert_eq!(map.get_index_of(&'+'), Some(27));
619 /// assert_eq!(map.len(), 28);
620 /// ```
621 ///
622 /// ```should_panic
623 /// use indexmap::IndexMap;
624 /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
625 ///
626 /// // This is an invalid index for moving an existing key!
627 /// map.shift_insert(map.len(), 'a', ());
628 /// ```
629 #[track_caller]
630 pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V> {
631 let len = self.len();
632 match self.entry(key) {
633 Entry::Occupied(mut entry) => {
634 assert!(
635 index < len,
636 "index out of bounds: the len is {len} but the index is {index}"
637 );
638
639 let old = mem::replace(entry.get_mut(), value);
640 entry.move_index(index);
641 Some(old)
642 }
643 Entry::Vacant(entry) => {
644 assert!(
645 index <= len,
646 "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
647 );
648
649 entry.shift_insert(index, value);
650 None
651 }
652 }
653 }
654
655 /// Get the given key’s corresponding entry in the map for insertion and/or
656 /// in-place manipulation.
657 ///
658 /// Computes in **O(1)** time (amortized average).
659 pub fn entry(&mut self, key: K) -> Entry<'_, K, V> {
660 let hash = self.hash(&key);
661 self.core.entry(hash, key)
662 }
663
664 /// Creates a splicing iterator that replaces the specified range in the map
665 /// with the given `replace_with` key-value iterator and yields the removed
666 /// items. `replace_with` does not need to be the same length as `range`.
667 ///
668 /// The `range` is removed even if the iterator is not consumed until the
669 /// end. It is unspecified how many elements are removed from the map if the
670 /// `Splice` value is leaked.
671 ///
672 /// The input iterator `replace_with` is only consumed when the `Splice`
673 /// value is dropped. If a key from the iterator matches an existing entry
674 /// in the map (outside of `range`), then the value will be updated in that
675 /// position. Otherwise, the new key-value pair will be inserted in the
676 /// replaced `range`.
677 ///
678 /// ***Panics*** if the starting point is greater than the end point or if
679 /// the end point is greater than the length of the map.
680 ///
681 /// # Examples
682 ///
683 /// ```
684 /// use indexmap::IndexMap;
685 ///
686 /// let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]);
687 /// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')];
688 /// let removed: Vec<_> = map.splice(2..4, new).collect();
689 ///
690 /// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted.
691 /// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')]));
692 /// assert_eq!(removed, &[(2, 'b'), (3, 'c')]);
693 /// ```
694 #[track_caller]
695 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S>
696 where
697 R: RangeBounds<usize>,
698 I: IntoIterator<Item = (K, V)>,
699 {
700 Splice::new(self, range, replace_with.into_iter())
701 }
702
703 /// Moves all key-value pairs from `other` into `self`, leaving `other` empty.
704 ///
705 /// This is equivalent to calling [`insert`][Self::insert] for each
706 /// key-value pair from `other` in order, which means that for keys that
707 /// already exist in `self`, their value is updated in the current position.
708 ///
709 /// # Examples
710 ///
711 /// ```
712 /// use indexmap::IndexMap;
713 ///
714 /// // Note: Key (3) is present in both maps.
715 /// let mut a = IndexMap::from([(3, "c"), (2, "b"), (1, "a")]);
716 /// let mut b = IndexMap::from([(3, "d"), (4, "e"), (5, "f")]);
717 /// let old_capacity = b.capacity();
718 ///
719 /// a.append(&mut b);
720 ///
721 /// assert_eq!(a.len(), 5);
722 /// assert_eq!(b.len(), 0);
723 /// assert_eq!(b.capacity(), old_capacity);
724 ///
725 /// assert!(a.keys().eq(&[3, 2, 1, 4, 5]));
726 /// assert_eq!(a[&3], "d"); // "c" was overwritten.
727 /// ```
728 pub fn append<S2>(&mut self, other: &mut IndexMap<K, V, S2>) {
729 self.extend(other.drain(..));
730 }
731}
732
733impl<K, V, S> IndexMap<K, V, S>
734where
735 S: BuildHasher,
736{
737 pub(crate) fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue {
738 let mut h = self.hash_builder.build_hasher();
739 key.hash(&mut h);
740 HashValue(h.finish() as usize)
741 }
742
743 /// Return `true` if an equivalent to `key` exists in the map.
744 ///
745 /// Computes in **O(1)** time (average).
746 pub fn contains_key<Q>(&self, key: &Q) -> bool
747 where
748 Q: ?Sized + Hash + Equivalent<K>,
749 {
750 self.get_index_of(key).is_some()
751 }
752
753 /// Return a reference to the value stored for `key`, if it is present,
754 /// else `None`.
755 ///
756 /// Computes in **O(1)** time (average).
757 pub fn get<Q>(&self, key: &Q) -> Option<&V>
758 where
759 Q: ?Sized + Hash + Equivalent<K>,
760 {
761 if let Some(i) = self.get_index_of(key) {
762 let entry = &self.as_entries()[i];
763 Some(&entry.value)
764 } else {
765 None
766 }
767 }
768
769 /// Return references to the key-value pair stored for `key`,
770 /// if it is present, else `None`.
771 ///
772 /// Computes in **O(1)** time (average).
773 pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
774 where
775 Q: ?Sized + Hash + Equivalent<K>,
776 {
777 if let Some(i) = self.get_index_of(key) {
778 let entry = &self.as_entries()[i];
779 Some((&entry.key, &entry.value))
780 } else {
781 None
782 }
783 }
784
785 /// Return item index, key and value
786 pub fn get_full<Q>(&self, key: &Q) -> Option<(usize, &K, &V)>
787 where
788 Q: ?Sized + Hash + Equivalent<K>,
789 {
790 if let Some(i) = self.get_index_of(key) {
791 let entry = &self.as_entries()[i];
792 Some((i, &entry.key, &entry.value))
793 } else {
794 None
795 }
796 }
797
798 /// Return item index, if it exists in the map
799 ///
800 /// Computes in **O(1)** time (average).
801 pub fn get_index_of<Q>(&self, key: &Q) -> Option<usize>
802 where
803 Q: ?Sized + Hash + Equivalent<K>,
804 {
805 match self.as_entries() {
806 [] => None,
807 [x] => key.equivalent(&x.key).then_some(0),
808 _ => {
809 let hash = self.hash(key);
810 self.core.get_index_of(hash, key)
811 }
812 }
813 }
814
815 pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
816 where
817 Q: ?Sized + Hash + Equivalent<K>,
818 {
819 if let Some(i) = self.get_index_of(key) {
820 let entry = &mut self.as_entries_mut()[i];
821 Some(&mut entry.value)
822 } else {
823 None
824 }
825 }
826
827 pub fn get_full_mut<Q>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)>
828 where
829 Q: ?Sized + Hash + Equivalent<K>,
830 {
831 if let Some(i) = self.get_index_of(key) {
832 let entry = &mut self.as_entries_mut()[i];
833 Some((i, &entry.key, &mut entry.value))
834 } else {
835 None
836 }
837 }
838
839 /// Return the values for `N` keys. If any key is duplicated, this function will panic.
840 ///
841 /// # Examples
842 ///
843 /// ```
844 /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
845 /// assert_eq!(map.get_disjoint_mut([&2, &1]), [Some(&mut 'c'), Some(&mut 'a')]);
846 /// ```
847 pub fn get_disjoint_mut<Q, const N: usize>(&mut self, keys: [&Q; N]) -> [Option<&mut V>; N]
848 where
849 Q: ?Sized + Hash + Equivalent<K>,
850 {
851 let indices = keys.map(|key| self.get_index_of(key));
852 match self.as_mut_slice().get_disjoint_opt_mut(indices) {
853 Err(GetDisjointMutError::IndexOutOfBounds) => {
854 unreachable!(
855 "Internal error: indices should never be OOB as we got them from get_index_of"
856 );
857 }
858 Err(GetDisjointMutError::OverlappingIndices) => {
859 panic!("duplicate keys found");
860 }
861 Ok(key_values) => key_values.map(|kv_opt| kv_opt.map(|kv| kv.1)),
862 }
863 }
864
865 /// Remove the key-value pair equivalent to `key` and return
866 /// its value.
867 ///
868 /// **NOTE:** This is equivalent to [`.swap_remove(key)`][Self::swap_remove], replacing this
869 /// entry's position with the last element, and it is deprecated in favor of calling that
870 /// explicitly. If you need to preserve the relative order of the keys in the map, use
871 /// [`.shift_remove(key)`][Self::shift_remove] instead.
872 #[deprecated(note = "`remove` disrupts the map order -- \
873 use `swap_remove` or `shift_remove` for explicit behavior.")]
874 pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
875 where
876 Q: ?Sized + Hash + Equivalent<K>,
877 {
878 self.swap_remove(key)
879 }
880
881 /// Remove and return the key-value pair equivalent to `key`.
882 ///
883 /// **NOTE:** This is equivalent to [`.swap_remove_entry(key)`][Self::swap_remove_entry],
884 /// replacing this entry's position with the last element, and it is deprecated in favor of
885 /// calling that explicitly. If you need to preserve the relative order of the keys in the map,
886 /// use [`.shift_remove_entry(key)`][Self::shift_remove_entry] instead.
887 #[deprecated(note = "`remove_entry` disrupts the map order -- \
888 use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")]
889 pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
890 where
891 Q: ?Sized + Hash + Equivalent<K>,
892 {
893 self.swap_remove_entry(key)
894 }
895
896 /// Remove the key-value pair equivalent to `key` and return
897 /// its value.
898 ///
899 /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
900 /// last element of the map and popping it off. **This perturbs
901 /// the position of what used to be the last element!**
902 ///
903 /// Return `None` if `key` is not in map.
904 ///
905 /// Computes in **O(1)** time (average).
906 pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V>
907 where
908 Q: ?Sized + Hash + Equivalent<K>,
909 {
910 self.swap_remove_full(key).map(third)
911 }
912
913 /// Remove and return the key-value pair equivalent to `key`.
914 ///
915 /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
916 /// last element of the map and popping it off. **This perturbs
917 /// the position of what used to be the last element!**
918 ///
919 /// Return `None` if `key` is not in map.
920 ///
921 /// Computes in **O(1)** time (average).
922 pub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
923 where
924 Q: ?Sized + Hash + Equivalent<K>,
925 {
926 match self.swap_remove_full(key) {
927 Some((_, key, value)) => Some((key, value)),
928 None => None,
929 }
930 }
931
932 /// Remove the key-value pair equivalent to `key` and return it and
933 /// the index it had.
934 ///
935 /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
936 /// last element of the map and popping it off. **This perturbs
937 /// the position of what used to be the last element!**
938 ///
939 /// Return `None` if `key` is not in map.
940 ///
941 /// Computes in **O(1)** time (average).
942 pub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
943 where
944 Q: ?Sized + Hash + Equivalent<K>,
945 {
946 match self.as_entries() {
947 [x] if key.equivalent(&x.key) => {
948 let (k, v) = self.core.pop()?;
949 Some((0, k, v))
950 }
951 [_] | [] => None,
952 _ => {
953 let hash = self.hash(key);
954 self.core.swap_remove_full(hash, key)
955 }
956 }
957 }
958
959 /// Remove the key-value pair equivalent to `key` and return
960 /// its value.
961 ///
962 /// Like [`Vec::remove`], the pair is removed by shifting all of the
963 /// elements that follow it, preserving their relative order.
964 /// **This perturbs the index of all of those elements!**
965 ///
966 /// Return `None` if `key` is not in map.
967 ///
968 /// Computes in **O(n)** time (average).
969 pub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V>
970 where
971 Q: ?Sized + Hash + Equivalent<K>,
972 {
973 self.shift_remove_full(key).map(third)
974 }
975
976 /// Remove and return the key-value pair equivalent to `key`.
977 ///
978 /// Like [`Vec::remove`], the pair is removed by shifting all of the
979 /// elements that follow it, preserving their relative order.
980 /// **This perturbs the index of all of those elements!**
981 ///
982 /// Return `None` if `key` is not in map.
983 ///
984 /// Computes in **O(n)** time (average).
985 pub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
986 where
987 Q: ?Sized + Hash + Equivalent<K>,
988 {
989 match self.shift_remove_full(key) {
990 Some((_, key, value)) => Some((key, value)),
991 None => None,
992 }
993 }
994
995 /// Remove the key-value pair equivalent to `key` and return it and
996 /// the index it had.
997 ///
998 /// Like [`Vec::remove`], the pair is removed by shifting all of the
999 /// elements that follow it, preserving their relative order.
1000 /// **This perturbs the index of all of those elements!**
1001 ///
1002 /// Return `None` if `key` is not in map.
1003 ///
1004 /// Computes in **O(n)** time (average).
1005 pub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1006 where
1007 Q: ?Sized + Hash + Equivalent<K>,
1008 {
1009 match self.as_entries() {
1010 [x] if key.equivalent(&x.key) => {
1011 let (k, v) = self.core.pop()?;
1012 Some((0, k, v))
1013 }
1014 [_] | [] => None,
1015 _ => {
1016 let hash = self.hash(key);
1017 self.core.shift_remove_full(hash, key)
1018 }
1019 }
1020 }
1021}
1022
1023impl<K, V, S> IndexMap<K, V, S> {
1024 /// Remove the last key-value pair
1025 ///
1026 /// This preserves the order of the remaining elements.
1027 ///
1028 /// Computes in **O(1)** time (average).
1029 #[doc(alias = "pop_last")] // like `BTreeMap`
1030 pub fn pop(&mut self) -> Option<(K, V)> {
1031 self.core.pop()
1032 }
1033
1034 /// Scan through each key-value pair in the map and keep those where the
1035 /// closure `keep` returns `true`.
1036 ///
1037 /// The elements are visited in order, and remaining elements keep their
1038 /// order.
1039 ///
1040 /// Computes in **O(n)** time (average).
1041 pub fn retain<F>(&mut self, mut keep: F)
1042 where
1043 F: FnMut(&K, &mut V) -> bool,
1044 {
1045 self.core.retain_in_order(move |k, v| keep(k, v));
1046 }
1047
1048 /// Sort the map’s key-value pairs by the default ordering of the keys.
1049 ///
1050 /// This is a stable sort -- but equivalent keys should not normally coexist in
1051 /// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred
1052 /// because it is generally faster and doesn't allocate auxiliary memory.
1053 ///
1054 /// See [`sort_by`](Self::sort_by) for details.
1055 pub fn sort_keys(&mut self)
1056 where
1057 K: Ord,
1058 {
1059 self.with_entries(move |entries| {
1060 entries.sort_by(move |a, b| K::cmp(&a.key, &b.key));
1061 });
1062 }
1063
1064 /// Sort the map’s key-value pairs in place using the comparison
1065 /// function `cmp`.
1066 ///
1067 /// The comparison function receives two key and value pairs to compare (you
1068 /// can sort by keys or values or their combination as needed).
1069 ///
1070 /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1071 /// the length of the map and *c* the capacity. The sort is stable.
1072 pub fn sort_by<F>(&mut self, mut cmp: F)
1073 where
1074 F: FnMut(&K, &V, &K, &V) -> Ordering,
1075 {
1076 self.with_entries(move |entries| {
1077 entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1078 });
1079 }
1080
1081 /// Sort the key-value pairs of the map and return a by-value iterator of
1082 /// the key-value pairs with the result.
1083 ///
1084 /// The sort is stable.
1085 pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1086 where
1087 F: FnMut(&K, &V, &K, &V) -> Ordering,
1088 {
1089 let mut entries = self.into_entries();
1090 entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1091 IntoIter::new(entries)
1092 }
1093
1094 /// Sort the map's key-value pairs by the default ordering of the keys, but
1095 /// may not preserve the order of equal elements.
1096 ///
1097 /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
1098 pub fn sort_unstable_keys(&mut self)
1099 where
1100 K: Ord,
1101 {
1102 self.with_entries(move |entries| {
1103 entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key));
1104 });
1105 }
1106
1107 /// Sort the map's key-value pairs in place using the comparison function `cmp`, but
1108 /// may not preserve the order of equal elements.
1109 ///
1110 /// The comparison function receives two key and value pairs to compare (you
1111 /// can sort by keys or values or their combination as needed).
1112 ///
1113 /// Computes in **O(n log n + c)** time where *n* is
1114 /// the length of the map and *c* is the capacity. The sort is unstable.
1115 pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
1116 where
1117 F: FnMut(&K, &V, &K, &V) -> Ordering,
1118 {
1119 self.with_entries(move |entries| {
1120 entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1121 });
1122 }
1123
1124 /// Sort the key-value pairs of the map and return a by-value iterator of
1125 /// the key-value pairs with the result.
1126 ///
1127 /// The sort is unstable.
1128 #[inline]
1129 pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1130 where
1131 F: FnMut(&K, &V, &K, &V) -> Ordering,
1132 {
1133 let mut entries = self.into_entries();
1134 entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1135 IntoIter::new(entries)
1136 }
1137
1138 /// Sort the map’s key-value pairs in place using a sort-key extraction function.
1139 ///
1140 /// During sorting, the function is called at most once per entry, by using temporary storage
1141 /// to remember the results of its evaluation. The order of calls to the function is
1142 /// unspecified and may change between versions of `indexmap` or the standard library.
1143 ///
1144 /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1145 /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1146 pub fn sort_by_cached_key<T, F>(&mut self, mut sort_key: F)
1147 where
1148 T: Ord,
1149 F: FnMut(&K, &V) -> T,
1150 {
1151 self.with_entries(move |entries| {
1152 entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value));
1153 });
1154 }
1155
1156 /// Search over a sorted map for a key.
1157 ///
1158 /// Returns the position where that key is present, or the position where it can be inserted to
1159 /// maintain the sort. See [`slice::binary_search`] for more details.
1160 ///
1161 /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up
1162 /// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys.
1163 pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize>
1164 where
1165 K: Ord,
1166 {
1167 self.as_slice().binary_search_keys(x)
1168 }
1169
1170 /// Search over a sorted map with a comparator function.
1171 ///
1172 /// Returns the position where that value is present, or the position where it can be inserted
1173 /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1174 ///
1175 /// Computes in **O(log(n))** time.
1176 #[inline]
1177 pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1178 where
1179 F: FnMut(&'a K, &'a V) -> Ordering,
1180 {
1181 self.as_slice().binary_search_by(f)
1182 }
1183
1184 /// Search over a sorted map with an extraction function.
1185 ///
1186 /// Returns the position where that value is present, or the position where it can be inserted
1187 /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1188 ///
1189 /// Computes in **O(log(n))** time.
1190 #[inline]
1191 pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1192 where
1193 F: FnMut(&'a K, &'a V) -> B,
1194 B: Ord,
1195 {
1196 self.as_slice().binary_search_by_key(b, f)
1197 }
1198
1199 /// Returns the index of the partition point of a sorted map according to the given predicate
1200 /// (the index of the first element of the second partition).
1201 ///
1202 /// See [`slice::partition_point`] for more details.
1203 ///
1204 /// Computes in **O(log(n))** time.
1205 #[must_use]
1206 pub fn partition_point<P>(&self, pred: P) -> usize
1207 where
1208 P: FnMut(&K, &V) -> bool,
1209 {
1210 self.as_slice().partition_point(pred)
1211 }
1212
1213 /// Reverses the order of the map’s key-value pairs in place.
1214 ///
1215 /// Computes in **O(n)** time and **O(1)** space.
1216 pub fn reverse(&mut self) {
1217 self.core.reverse()
1218 }
1219
1220 /// Returns a slice of all the key-value pairs in the map.
1221 ///
1222 /// Computes in **O(1)** time.
1223 pub fn as_slice(&self) -> &Slice<K, V> {
1224 Slice::from_slice(self.as_entries())
1225 }
1226
1227 /// Returns a mutable slice of all the key-value pairs in the map.
1228 ///
1229 /// Computes in **O(1)** time.
1230 pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> {
1231 Slice::from_mut_slice(self.as_entries_mut())
1232 }
1233
1234 /// Converts into a boxed slice of all the key-value pairs in the map.
1235 ///
1236 /// Note that this will drop the inner hash table and any excess capacity.
1237 pub fn into_boxed_slice(self) -> Box<Slice<K, V>> {
1238 Slice::from_boxed(self.into_entries().into_boxed_slice())
1239 }
1240
1241 /// Get a key-value pair by index
1242 ///
1243 /// Valid indices are `0 <= index < self.len()`.
1244 ///
1245 /// Computes in **O(1)** time.
1246 pub fn get_index(&self, index: usize) -> Option<(&K, &V)> {
1247 self.as_entries().get(index).map(Bucket::refs)
1248 }
1249
1250 /// Get a key-value pair by index
1251 ///
1252 /// Valid indices are `0 <= index < self.len()`.
1253 ///
1254 /// Computes in **O(1)** time.
1255 pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> {
1256 self.as_entries_mut().get_mut(index).map(Bucket::ref_mut)
1257 }
1258
1259 /// Get an entry in the map by index for in-place manipulation.
1260 ///
1261 /// Valid indices are `0 <= index < self.len()`.
1262 ///
1263 /// Computes in **O(1)** time.
1264 pub fn get_index_entry(&mut self, index: usize) -> Option<IndexedEntry<'_, K, V>> {
1265 if index >= self.len() {
1266 return None;
1267 }
1268 Some(IndexedEntry::new(&mut self.core, index))
1269 }
1270
1271 /// Get an array of `N` key-value pairs by `N` indices
1272 ///
1273 /// Valid indices are *0 <= index < self.len()* and each index needs to be unique.
1274 ///
1275 /// # Examples
1276 ///
1277 /// ```
1278 /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
1279 /// assert_eq!(map.get_disjoint_indices_mut([2, 0]), Ok([(&2, &mut 'c'), (&1, &mut 'a')]));
1280 /// ```
1281 pub fn get_disjoint_indices_mut<const N: usize>(
1282 &mut self,
1283 indices: [usize; N],
1284 ) -> Result<[(&K, &mut V); N], GetDisjointMutError> {
1285 self.as_mut_slice().get_disjoint_mut(indices)
1286 }
1287
1288 /// Returns a slice of key-value pairs in the given range of indices.
1289 ///
1290 /// Valid indices are `0 <= index < self.len()`.
1291 ///
1292 /// Computes in **O(1)** time.
1293 pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<K, V>> {
1294 let entries = self.as_entries();
1295 let range = try_simplify_range(range, entries.len())?;
1296 entries.get(range).map(Slice::from_slice)
1297 }
1298
1299 /// Returns a mutable slice of key-value pairs in the given range of indices.
1300 ///
1301 /// Valid indices are `0 <= index < self.len()`.
1302 ///
1303 /// Computes in **O(1)** time.
1304 pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Slice<K, V>> {
1305 let entries = self.as_entries_mut();
1306 let range = try_simplify_range(range, entries.len())?;
1307 entries.get_mut(range).map(Slice::from_mut_slice)
1308 }
1309
1310 /// Get the first key-value pair
1311 ///
1312 /// Computes in **O(1)** time.
1313 #[doc(alias = "first_key_value")] // like `BTreeMap`
1314 pub fn first(&self) -> Option<(&K, &V)> {
1315 self.as_entries().first().map(Bucket::refs)
1316 }
1317
1318 /// Get the first key-value pair, with mutable access to the value
1319 ///
1320 /// Computes in **O(1)** time.
1321 pub fn first_mut(&mut self) -> Option<(&K, &mut V)> {
1322 self.as_entries_mut().first_mut().map(Bucket::ref_mut)
1323 }
1324
1325 /// Get the first entry in the map for in-place manipulation.
1326 ///
1327 /// Computes in **O(1)** time.
1328 pub fn first_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1329 self.get_index_entry(0)
1330 }
1331
1332 /// Get the last key-value pair
1333 ///
1334 /// Computes in **O(1)** time.
1335 #[doc(alias = "last_key_value")] // like `BTreeMap`
1336 pub fn last(&self) -> Option<(&K, &V)> {
1337 self.as_entries().last().map(Bucket::refs)
1338 }
1339
1340 /// Get the last key-value pair, with mutable access to the value
1341 ///
1342 /// Computes in **O(1)** time.
1343 pub fn last_mut(&mut self) -> Option<(&K, &mut V)> {
1344 self.as_entries_mut().last_mut().map(Bucket::ref_mut)
1345 }
1346
1347 /// Get the last entry in the map for in-place manipulation.
1348 ///
1349 /// Computes in **O(1)** time.
1350 pub fn last_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1351 self.get_index_entry(self.len().checked_sub(1)?)
1352 }
1353
1354 /// Remove the key-value pair by index
1355 ///
1356 /// Valid indices are `0 <= index < self.len()`.
1357 ///
1358 /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1359 /// last element of the map and popping it off. **This perturbs
1360 /// the position of what used to be the last element!**
1361 ///
1362 /// Computes in **O(1)** time (average).
1363 pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1364 self.core.swap_remove_index(index)
1365 }
1366
1367 /// Remove the key-value pair by index
1368 ///
1369 /// Valid indices are `0 <= index < self.len()`.
1370 ///
1371 /// Like [`Vec::remove`], the pair is removed by shifting all of the
1372 /// elements that follow it, preserving their relative order.
1373 /// **This perturbs the index of all of those elements!**
1374 ///
1375 /// Computes in **O(n)** time (average).
1376 pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1377 self.core.shift_remove_index(index)
1378 }
1379
1380 /// Moves the position of a key-value pair from one index to another
1381 /// by shifting all other pairs in-between.
1382 ///
1383 /// * If `from < to`, the other pairs will shift down while the targeted pair moves up.
1384 /// * If `from > to`, the other pairs will shift up while the targeted pair moves down.
1385 ///
1386 /// ***Panics*** if `from` or `to` are out of bounds.
1387 ///
1388 /// Computes in **O(n)** time (average).
1389 #[track_caller]
1390 pub fn move_index(&mut self, from: usize, to: usize) {
1391 self.core.move_index(from, to)
1392 }
1393
1394 /// Swaps the position of two key-value pairs in the map.
1395 ///
1396 /// ***Panics*** if `a` or `b` are out of bounds.
1397 ///
1398 /// Computes in **O(1)** time (average).
1399 #[track_caller]
1400 pub fn swap_indices(&mut self, a: usize, b: usize) {
1401 self.core.swap_indices(a, b)
1402 }
1403}
1404
1405/// Access [`IndexMap`] values corresponding to a key.
1406///
1407/// # Examples
1408///
1409/// ```
1410/// use indexmap::IndexMap;
1411///
1412/// let mut map = IndexMap::new();
1413/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1414/// map.insert(word.to_lowercase(), word.to_uppercase());
1415/// }
1416/// assert_eq!(map["lorem"], "LOREM");
1417/// assert_eq!(map["ipsum"], "IPSUM");
1418/// ```
1419///
1420/// ```should_panic
1421/// use indexmap::IndexMap;
1422///
1423/// let mut map = IndexMap::new();
1424/// map.insert("foo", 1);
1425/// println!("{:?}", map["bar"]); // panics!
1426/// ```
1427impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S>
1428where
1429 Q: Hash + Equivalent<K>,
1430 S: BuildHasher,
1431{
1432 type Output = V;
1433
1434 /// Returns a reference to the value corresponding to the supplied `key`.
1435 ///
1436 /// ***Panics*** if `key` is not present in the map.
1437 fn index(&self, key: &Q) -> &V {
1438 self.get(key).expect("no entry found for key")
1439 }
1440}
1441
1442/// Access [`IndexMap`] values corresponding to a key.
1443///
1444/// Mutable indexing allows changing / updating values of key-value
1445/// pairs that are already present.
1446///
1447/// You can **not** insert new pairs with index syntax, use `.insert()`.
1448///
1449/// # Examples
1450///
1451/// ```
1452/// use indexmap::IndexMap;
1453///
1454/// let mut map = IndexMap::new();
1455/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1456/// map.insert(word.to_lowercase(), word.to_string());
1457/// }
1458/// let lorem = &mut map["lorem"];
1459/// assert_eq!(lorem, "Lorem");
1460/// lorem.retain(char::is_lowercase);
1461/// assert_eq!(map["lorem"], "orem");
1462/// ```
1463///
1464/// ```should_panic
1465/// use indexmap::IndexMap;
1466///
1467/// let mut map = IndexMap::new();
1468/// map.insert("foo", 1);
1469/// map["bar"] = 1; // panics!
1470/// ```
1471impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S>
1472where
1473 Q: Hash + Equivalent<K>,
1474 S: BuildHasher,
1475{
1476 /// Returns a mutable reference to the value corresponding to the supplied `key`.
1477 ///
1478 /// ***Panics*** if `key` is not present in the map.
1479 fn index_mut(&mut self, key: &Q) -> &mut V {
1480 self.get_mut(key).expect("no entry found for key")
1481 }
1482}
1483
1484/// Access [`IndexMap`] values at indexed positions.
1485///
1486/// See [`Index<usize> for Keys`][keys] to access a map's keys instead.
1487///
1488/// [keys]: Keys#impl-Index<usize>-for-Keys<'a,+K,+V>
1489///
1490/// # Examples
1491///
1492/// ```
1493/// use indexmap::IndexMap;
1494///
1495/// let mut map = IndexMap::new();
1496/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1497/// map.insert(word.to_lowercase(), word.to_uppercase());
1498/// }
1499/// assert_eq!(map[0], "LOREM");
1500/// assert_eq!(map[1], "IPSUM");
1501/// map.reverse();
1502/// assert_eq!(map[0], "AMET");
1503/// assert_eq!(map[1], "SIT");
1504/// map.sort_keys();
1505/// assert_eq!(map[0], "AMET");
1506/// assert_eq!(map[1], "DOLOR");
1507/// ```
1508///
1509/// ```should_panic
1510/// use indexmap::IndexMap;
1511///
1512/// let mut map = IndexMap::new();
1513/// map.insert("foo", 1);
1514/// println!("{:?}", map[10]); // panics!
1515/// ```
1516impl<K, V, S> Index<usize> for IndexMap<K, V, S> {
1517 type Output = V;
1518
1519 /// Returns a reference to the value at the supplied `index`.
1520 ///
1521 /// ***Panics*** if `index` is out of bounds.
1522 fn index(&self, index: usize) -> &V {
1523 if let Some((_, value)) = self.get_index(index) {
1524 value
1525 } else {
1526 panic!(
1527 "index out of bounds: the len is {len} but the index is {index}",
1528 len = self.len()
1529 );
1530 }
1531 }
1532}
1533
1534/// Access [`IndexMap`] values at indexed positions.
1535///
1536/// Mutable indexing allows changing / updating indexed values
1537/// that are already present.
1538///
1539/// You can **not** insert new values with index syntax -- use [`.insert()`][IndexMap::insert].
1540///
1541/// # Examples
1542///
1543/// ```
1544/// use indexmap::IndexMap;
1545///
1546/// let mut map = IndexMap::new();
1547/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1548/// map.insert(word.to_lowercase(), word.to_string());
1549/// }
1550/// let lorem = &mut map[0];
1551/// assert_eq!(lorem, "Lorem");
1552/// lorem.retain(char::is_lowercase);
1553/// assert_eq!(map["lorem"], "orem");
1554/// ```
1555///
1556/// ```should_panic
1557/// use indexmap::IndexMap;
1558///
1559/// let mut map = IndexMap::new();
1560/// map.insert("foo", 1);
1561/// map[10] = 1; // panics!
1562/// ```
1563impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> {
1564 /// Returns a mutable reference to the value at the supplied `index`.
1565 ///
1566 /// ***Panics*** if `index` is out of bounds.
1567 fn index_mut(&mut self, index: usize) -> &mut V {
1568 let len: usize = self.len();
1569
1570 if let Some((_, value)) = self.get_index_mut(index) {
1571 value
1572 } else {
1573 panic!("index out of bounds: the len is {len} but the index is {index}");
1574 }
1575 }
1576}
1577
1578impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S>
1579where
1580 K: Hash + Eq,
1581 S: BuildHasher + Default,
1582{
1583 /// Create an `IndexMap` from the sequence of key-value pairs in the
1584 /// iterable.
1585 ///
1586 /// `from_iter` uses the same logic as `extend`. See
1587 /// [`extend`][IndexMap::extend] for more details.
1588 fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self {
1589 let iter = iterable.into_iter();
1590 let (low, _) = iter.size_hint();
1591 let mut map = Self::with_capacity_and_hasher(low, <_>::default());
1592 map.extend(iter);
1593 map
1594 }
1595}
1596
1597#[cfg(feature = "std")]
1598#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1599impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState>
1600where
1601 K: Hash + Eq,
1602{
1603 /// # Examples
1604 ///
1605 /// ```
1606 /// use indexmap::IndexMap;
1607 ///
1608 /// let map1 = IndexMap::from([(1, 2), (3, 4)]);
1609 /// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into();
1610 /// assert_eq!(map1, map2);
1611 /// ```
1612 fn from(arr: [(K, V); N]) -> Self {
1613 Self::from_iter(arr)
1614 }
1615}
1616
1617impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S>
1618where
1619 K: Hash + Eq,
1620 S: BuildHasher,
1621{
1622 /// Extend the map with all key-value pairs in the iterable.
1623 ///
1624 /// This is equivalent to calling [`insert`][IndexMap::insert] for each of
1625 /// them in order, which means that for keys that already existed
1626 /// in the map, their value is updated but it keeps the existing order.
1627 ///
1628 /// New keys are inserted in the order they appear in the sequence. If
1629 /// equivalents of a key occur more than once, the last corresponding value
1630 /// prevails.
1631 fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) {
1632 // (Note: this is a copy of `std`/`hashbrown`'s reservation logic.)
1633 // Keys may be already present or show multiple times in the iterator.
1634 // Reserve the entire hint lower bound if the map is empty.
1635 // Otherwise reserve half the hint (rounded up), so the map
1636 // will only resize twice in the worst case.
1637 let iter = iterable.into_iter();
1638 let reserve = if self.is_empty() {
1639 iter.size_hint().0
1640 } else {
1641 (iter.size_hint().0 + 1) / 2
1642 };
1643 self.reserve(reserve);
1644 iter.for_each(move |(k, v)| {
1645 self.insert(k, v);
1646 });
1647 }
1648}
1649
1650impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S>
1651where
1652 K: Hash + Eq + Copy,
1653 V: Copy,
1654 S: BuildHasher,
1655{
1656 /// Extend the map with all key-value pairs in the iterable.
1657 ///
1658 /// See the first extend method for more details.
1659 fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) {
1660 self.extend(iterable.into_iter().map(|(&key, &value)| (key, value)));
1661 }
1662}
1663
1664impl<K, V, S> Default for IndexMap<K, V, S>
1665where
1666 S: Default,
1667{
1668 /// Return an empty [`IndexMap`]
1669 fn default() -> Self {
1670 Self::with_capacity_and_hasher(0, S::default())
1671 }
1672}
1673
1674impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1>
1675where
1676 K: Hash + Eq,
1677 V1: PartialEq<V2>,
1678 S1: BuildHasher,
1679 S2: BuildHasher,
1680{
1681 fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool {
1682 if self.len() != other.len() {
1683 return false;
1684 }
1685
1686 self.iter()
1687 .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
1688 }
1689}
1690
1691impl<K, V, S> Eq for IndexMap<K, V, S>
1692where
1693 K: Eq + Hash,
1694 V: Eq,
1695 S: BuildHasher,
1696{
1697}