indexmap/
map.rs

1//! [`IndexMap`] is a hash table where the iteration order of the key-value
2//! pairs is independent of the hash values of the keys.
3
4mod core;
5mod iter;
6mod mutable;
7mod slice;
8
9#[cfg(feature = "serde")]
10#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
11pub mod serde_seq;
12
13#[cfg(test)]
14mod tests;
15
16pub use self::core::raw_entry_v1::{self, RawEntryApiV1};
17pub use self::core::{Entry, IndexedEntry, OccupiedEntry, VacantEntry};
18pub use self::iter::{
19    Drain, ExtractIf, IntoIter, IntoKeys, IntoValues, Iter, IterMut, IterMut2, Keys, Splice,
20    Values, ValuesMut,
21};
22pub use self::mutable::MutableEntryKey;
23pub use self::mutable::MutableKeys;
24pub use self::slice::Slice;
25
26#[cfg(feature = "rayon")]
27pub use crate::rayon::map as rayon;
28
29use ::core::cmp::Ordering;
30use ::core::fmt;
31use ::core::hash::{BuildHasher, Hash, Hasher};
32use ::core::mem;
33use ::core::ops::{Index, IndexMut, RangeBounds};
34use alloc::boxed::Box;
35use alloc::vec::Vec;
36
37#[cfg(feature = "std")]
38use std::collections::hash_map::RandomState;
39
40pub(crate) use self::core::{ExtractCore, IndexMapCore};
41use crate::util::{third, try_simplify_range};
42use crate::{Bucket, Equivalent, GetDisjointMutError, HashValue, TryReserveError};
43
44/// A hash table where the iteration order of the key-value pairs is independent
45/// of the hash values of the keys.
46///
47/// The interface is closely compatible with the standard
48/// [`HashMap`][std::collections::HashMap],
49/// but also has additional features.
50///
51/// # Order
52///
53/// The key-value pairs have a consistent order that is determined by
54/// the sequence of insertion and removal calls on the map. The order does
55/// not depend on the keys or the hash function at all.
56///
57/// All iterators traverse the map in *the order*.
58///
59/// The insertion order is preserved, with **notable exceptions** like the
60/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
61/// Methods such as [`.sort_by()`][Self::sort_by] of
62/// course result in a new order, depending on the sorting order.
63///
64/// # Indices
65///
66/// The key-value pairs are indexed in a compact range without holes in the
67/// range `0..self.len()`. For example, the method `.get_full` looks up the
68/// index for a key, and the method `.get_index` looks up the key-value pair by
69/// index.
70///
71/// # Examples
72///
73/// ```
74/// use indexmap::IndexMap;
75///
76/// // count the frequency of each letter in a sentence.
77/// let mut letters = IndexMap::new();
78/// for ch in "a short treatise on fungi".chars() {
79///     *letters.entry(ch).or_insert(0) += 1;
80/// }
81///
82/// assert_eq!(letters[&'s'], 2);
83/// assert_eq!(letters[&'t'], 3);
84/// assert_eq!(letters[&'u'], 1);
85/// assert_eq!(letters.get(&'y'), None);
86/// ```
87#[cfg(feature = "std")]
88pub struct IndexMap<K, V, S = RandomState> {
89    pub(crate) core: IndexMapCore<K, V>,
90    hash_builder: S,
91}
92#[cfg(not(feature = "std"))]
93pub struct IndexMap<K, V, S> {
94    pub(crate) core: IndexMapCore<K, V>,
95    hash_builder: S,
96}
97
98impl<K, V, S> Clone for IndexMap<K, V, S>
99where
100    K: Clone,
101    V: Clone,
102    S: Clone,
103{
104    fn clone(&self) -> Self {
105        IndexMap {
106            core: self.core.clone(),
107            hash_builder: self.hash_builder.clone(),
108        }
109    }
110
111    fn clone_from(&mut self, other: &Self) {
112        self.core.clone_from(&other.core);
113        self.hash_builder.clone_from(&other.hash_builder);
114    }
115}
116
117impl<K, V, S> fmt::Debug for IndexMap<K, V, S>
118where
119    K: fmt::Debug,
120    V: fmt::Debug,
121{
122    #[cfg(not(feature = "test_debug"))]
123    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
124        f.debug_map().entries(self.iter()).finish()
125    }
126
127    #[cfg(feature = "test_debug")]
128    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
129        // Let the inner `IndexMapCore` print all of its details
130        f.debug_struct("IndexMap")
131            .field("core", &self.core)
132            .finish()
133    }
134}
135
136#[cfg(feature = "std")]
137#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
138impl<K, V> IndexMap<K, V> {
139    /// Create a new map. (Does not allocate.)
140    #[inline]
141    pub fn new() -> Self {
142        Self::with_capacity(0)
143    }
144
145    /// Create a new map with capacity for `n` key-value pairs. (Does not
146    /// allocate if `n` is zero.)
147    ///
148    /// Computes in **O(n)** time.
149    #[inline]
150    pub fn with_capacity(n: usize) -> Self {
151        Self::with_capacity_and_hasher(n, <_>::default())
152    }
153}
154
155impl<K, V, S> IndexMap<K, V, S> {
156    /// Create a new map with capacity for `n` key-value pairs. (Does not
157    /// allocate if `n` is zero.)
158    ///
159    /// Computes in **O(n)** time.
160    #[inline]
161    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
162        if n == 0 {
163            Self::with_hasher(hash_builder)
164        } else {
165            IndexMap {
166                core: IndexMapCore::with_capacity(n),
167                hash_builder,
168            }
169        }
170    }
171
172    /// Create a new map with `hash_builder`.
173    ///
174    /// This function is `const`, so it
175    /// can be called in `static` contexts.
176    pub const fn with_hasher(hash_builder: S) -> Self {
177        IndexMap {
178            core: IndexMapCore::new(),
179            hash_builder,
180        }
181    }
182
183    #[inline]
184    pub(crate) fn into_entries(self) -> Vec<Bucket<K, V>> {
185        self.core.into_entries()
186    }
187
188    #[inline]
189    pub(crate) fn as_entries(&self) -> &[Bucket<K, V>] {
190        self.core.as_entries()
191    }
192
193    #[inline]
194    pub(crate) fn as_entries_mut(&mut self) -> &mut [Bucket<K, V>] {
195        self.core.as_entries_mut()
196    }
197
198    pub(crate) fn with_entries<F>(&mut self, f: F)
199    where
200        F: FnOnce(&mut [Bucket<K, V>]),
201    {
202        self.core.with_entries(f);
203    }
204
205    /// Return the number of elements the map can hold without reallocating.
206    ///
207    /// This number is a lower bound; the map might be able to hold more,
208    /// but is guaranteed to be able to hold at least this many.
209    ///
210    /// Computes in **O(1)** time.
211    pub fn capacity(&self) -> usize {
212        self.core.capacity()
213    }
214
215    /// Return a reference to the map's `BuildHasher`.
216    pub fn hasher(&self) -> &S {
217        &self.hash_builder
218    }
219
220    /// Return the number of key-value pairs in the map.
221    ///
222    /// Computes in **O(1)** time.
223    #[inline]
224    pub fn len(&self) -> usize {
225        self.core.len()
226    }
227
228    /// Returns true if the map contains no elements.
229    ///
230    /// Computes in **O(1)** time.
231    #[inline]
232    pub fn is_empty(&self) -> bool {
233        self.len() == 0
234    }
235
236    /// Return an iterator over the key-value pairs of the map, in their order
237    pub fn iter(&self) -> Iter<'_, K, V> {
238        Iter::new(self.as_entries())
239    }
240
241    /// Return an iterator over the key-value pairs of the map, in their order
242    pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
243        IterMut::new(self.as_entries_mut())
244    }
245
246    /// Return an iterator over the keys of the map, in their order
247    pub fn keys(&self) -> Keys<'_, K, V> {
248        Keys::new(self.as_entries())
249    }
250
251    /// Return an owning iterator over the keys of the map, in their order
252    pub fn into_keys(self) -> IntoKeys<K, V> {
253        IntoKeys::new(self.into_entries())
254    }
255
256    /// Return an iterator over the values of the map, in their order
257    pub fn values(&self) -> Values<'_, K, V> {
258        Values::new(self.as_entries())
259    }
260
261    /// Return an iterator over mutable references to the values of the map,
262    /// in their order
263    pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
264        ValuesMut::new(self.as_entries_mut())
265    }
266
267    /// Return an owning iterator over the values of the map, in their order
268    pub fn into_values(self) -> IntoValues<K, V> {
269        IntoValues::new(self.into_entries())
270    }
271
272    /// Remove all key-value pairs in the map, while preserving its capacity.
273    ///
274    /// Computes in **O(n)** time.
275    pub fn clear(&mut self) {
276        self.core.clear();
277    }
278
279    /// Shortens the map, keeping the first `len` elements and dropping the rest.
280    ///
281    /// If `len` is greater than the map's current length, this has no effect.
282    pub fn truncate(&mut self, len: usize) {
283        self.core.truncate(len);
284    }
285
286    /// Clears the `IndexMap` in the given index range, returning those
287    /// key-value pairs as a drain iterator.
288    ///
289    /// The range may be any type that implements [`RangeBounds<usize>`],
290    /// including all of the `std::ops::Range*` types, or even a tuple pair of
291    /// `Bound` start and end values. To drain the map entirely, use `RangeFull`
292    /// like `map.drain(..)`.
293    ///
294    /// This shifts down all entries following the drained range to fill the
295    /// gap, and keeps the allocated memory for reuse.
296    ///
297    /// ***Panics*** if the starting point is greater than the end point or if
298    /// the end point is greater than the length of the map.
299    #[track_caller]
300    pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V>
301    where
302        R: RangeBounds<usize>,
303    {
304        Drain::new(self.core.drain(range))
305    }
306
307    /// Creates an iterator which uses a closure to determine if an element should be removed,
308    /// for all elements in the given range.
309    ///
310    /// If the closure returns true, the element is removed from the map and yielded.
311    /// If the closure returns false, or panics, the element remains in the map and will not be
312    /// yielded.
313    ///
314    /// Note that `extract_if` lets you mutate every value in the filter closure, regardless of
315    /// whether you choose to keep or remove it.
316    ///
317    /// The range may be any type that implements [`RangeBounds<usize>`],
318    /// including all of the `std::ops::Range*` types, or even a tuple pair of
319    /// `Bound` start and end values. To check the entire map, use `RangeFull`
320    /// like `map.extract_if(.., predicate)`.
321    ///
322    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
323    /// or the iteration short-circuits, then the remaining elements will be retained.
324    /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
325    ///
326    /// [`retain`]: IndexMap::retain
327    ///
328    /// ***Panics*** if the starting point is greater than the end point or if
329    /// the end point is greater than the length of the map.
330    ///
331    /// # Examples
332    ///
333    /// Splitting a map into even and odd keys, reusing the original map:
334    ///
335    /// ```
336    /// use indexmap::IndexMap;
337    ///
338    /// let mut map: IndexMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
339    /// let extracted: IndexMap<i32, i32> = map.extract_if(.., |k, _v| k % 2 == 0).collect();
340    ///
341    /// let evens = extracted.keys().copied().collect::<Vec<_>>();
342    /// let odds = map.keys().copied().collect::<Vec<_>>();
343    ///
344    /// assert_eq!(evens, vec![0, 2, 4, 6]);
345    /// assert_eq!(odds, vec![1, 3, 5, 7]);
346    /// ```
347    #[track_caller]
348    pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, K, V, F>
349    where
350        F: FnMut(&K, &mut V) -> bool,
351        R: RangeBounds<usize>,
352    {
353        ExtractIf::new(&mut self.core, range, pred)
354    }
355
356    /// Splits the collection into two at the given index.
357    ///
358    /// Returns a newly allocated map containing the elements in the range
359    /// `[at, len)`. After the call, the original map will be left containing
360    /// the elements `[0, at)` with its previous capacity unchanged.
361    ///
362    /// ***Panics*** if `at > len`.
363    #[track_caller]
364    pub fn split_off(&mut self, at: usize) -> Self
365    where
366        S: Clone,
367    {
368        Self {
369            core: self.core.split_off(at),
370            hash_builder: self.hash_builder.clone(),
371        }
372    }
373
374    /// Reserve capacity for `additional` more key-value pairs.
375    ///
376    /// Computes in **O(n)** time.
377    pub fn reserve(&mut self, additional: usize) {
378        self.core.reserve(additional);
379    }
380
381    /// Reserve capacity for `additional` more key-value pairs, without over-allocating.
382    ///
383    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
384    /// frequent re-allocations. However, the underlying data structures may still have internal
385    /// capacity requirements, and the allocator itself may give more space than requested, so this
386    /// cannot be relied upon to be precisely minimal.
387    ///
388    /// Computes in **O(n)** time.
389    pub fn reserve_exact(&mut self, additional: usize) {
390        self.core.reserve_exact(additional);
391    }
392
393    /// Try to reserve capacity for `additional` more key-value pairs.
394    ///
395    /// Computes in **O(n)** time.
396    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
397        self.core.try_reserve(additional)
398    }
399
400    /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating.
401    ///
402    /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
403    /// frequent re-allocations. However, the underlying data structures may still have internal
404    /// capacity requirements, and the allocator itself may give more space than requested, so this
405    /// cannot be relied upon to be precisely minimal.
406    ///
407    /// Computes in **O(n)** time.
408    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
409        self.core.try_reserve_exact(additional)
410    }
411
412    /// Shrink the capacity of the map as much as possible.
413    ///
414    /// Computes in **O(n)** time.
415    pub fn shrink_to_fit(&mut self) {
416        self.core.shrink_to(0);
417    }
418
419    /// Shrink the capacity of the map with a lower limit.
420    ///
421    /// Computes in **O(n)** time.
422    pub fn shrink_to(&mut self, min_capacity: usize) {
423        self.core.shrink_to(min_capacity);
424    }
425}
426
427impl<K, V, S> IndexMap<K, V, S>
428where
429    K: Hash + Eq,
430    S: BuildHasher,
431{
432    /// Insert a key-value pair in the map.
433    ///
434    /// If an equivalent key already exists in the map: the key remains and
435    /// retains in its place in the order, its corresponding value is updated
436    /// with `value`, and the older value is returned inside `Some(_)`.
437    ///
438    /// If no equivalent key existed in the map: the new key-value pair is
439    /// inserted, last in order, and `None` is returned.
440    ///
441    /// Computes in **O(1)** time (amortized average).
442    ///
443    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
444    /// or [`insert_full`][Self::insert_full] if you need to get the index of
445    /// the corresponding key-value pair.
446    pub fn insert(&mut self, key: K, value: V) -> Option<V> {
447        self.insert_full(key, value).1
448    }
449
450    /// Insert a key-value pair in the map, and get their index.
451    ///
452    /// If an equivalent key already exists in the map: the key remains and
453    /// retains in its place in the order, its corresponding value is updated
454    /// with `value`, and the older value is returned inside `(index, Some(_))`.
455    ///
456    /// If no equivalent key existed in the map: the new key-value pair is
457    /// inserted, last in order, and `(index, None)` is returned.
458    ///
459    /// Computes in **O(1)** time (amortized average).
460    ///
461    /// See also [`entry`][Self::entry] if you want to insert *or* modify.
462    pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) {
463        let hash = self.hash(&key);
464        self.core.insert_full(hash, key, value)
465    }
466
467    /// Insert a key-value pair in the map at its ordered position among sorted keys.
468    ///
469    /// This is equivalent to finding the position with
470    /// [`binary_search_keys`][Self::binary_search_keys], then either updating
471    /// it or calling [`insert_before`][Self::insert_before] for a new key.
472    ///
473    /// If the sorted key is found in the map, its corresponding value is
474    /// updated with `value`, and the older value is returned inside
475    /// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at
476    /// the sorted position, and `(index, None)` is returned.
477    ///
478    /// If the existing keys are **not** already sorted, then the insertion
479    /// index is unspecified (like [`slice::binary_search`]), but the key-value
480    /// pair is moved to or inserted at that position regardless.
481    ///
482    /// Computes in **O(n)** time (average). Instead of repeating calls to
483    /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
484    /// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys]
485    /// or [`sort_unstable_keys`][Self::sort_unstable_keys] once.
486    pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>)
487    where
488        K: Ord,
489    {
490        match self.binary_search_keys(&key) {
491            Ok(i) => (i, Some(mem::replace(&mut self[i], value))),
492            Err(i) => self.insert_before(i, key, value),
493        }
494    }
495
496    /// Insert a key-value pair in the map before the entry at the given index, or at the end.
497    ///
498    /// If an equivalent key already exists in the map: the key remains and
499    /// is moved to the new position in the map, its corresponding value is updated
500    /// with `value`, and the older value is returned inside `Some(_)`. The returned index
501    /// will either be the given index or one less, depending on how the entry moved.
502    /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
503    ///
504    /// If no equivalent key existed in the map: the new key-value pair is
505    /// inserted exactly at the given index, and `None` is returned.
506    ///
507    /// ***Panics*** if `index` is out of bounds.
508    /// Valid indices are `0..=map.len()` (inclusive).
509    ///
510    /// Computes in **O(n)** time (average).
511    ///
512    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
513    /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
514    ///
515    /// # Examples
516    ///
517    /// ```
518    /// use indexmap::IndexMap;
519    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
520    ///
521    /// // The new key '*' goes exactly at the given index.
522    /// assert_eq!(map.get_index_of(&'*'), None);
523    /// assert_eq!(map.insert_before(10, '*', ()), (10, None));
524    /// assert_eq!(map.get_index_of(&'*'), Some(10));
525    ///
526    /// // Moving the key 'a' up will shift others down, so this moves *before* 10 to index 9.
527    /// assert_eq!(map.insert_before(10, 'a', ()), (9, Some(())));
528    /// assert_eq!(map.get_index_of(&'a'), Some(9));
529    /// assert_eq!(map.get_index_of(&'*'), Some(10));
530    ///
531    /// // Moving the key 'z' down will shift others up, so this moves to exactly 10.
532    /// assert_eq!(map.insert_before(10, 'z', ()), (10, Some(())));
533    /// assert_eq!(map.get_index_of(&'z'), Some(10));
534    /// assert_eq!(map.get_index_of(&'*'), Some(11));
535    ///
536    /// // Moving or inserting before the endpoint is also valid.
537    /// assert_eq!(map.len(), 27);
538    /// assert_eq!(map.insert_before(map.len(), '*', ()), (26, Some(())));
539    /// assert_eq!(map.get_index_of(&'*'), Some(26));
540    /// assert_eq!(map.insert_before(map.len(), '+', ()), (27, None));
541    /// assert_eq!(map.get_index_of(&'+'), Some(27));
542    /// assert_eq!(map.len(), 28);
543    /// ```
544    #[track_caller]
545    pub fn insert_before(&mut self, mut index: usize, key: K, value: V) -> (usize, Option<V>) {
546        let len = self.len();
547
548        assert!(
549            index <= len,
550            "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
551        );
552
553        match self.entry(key) {
554            Entry::Occupied(mut entry) => {
555                if index > entry.index() {
556                    // Some entries will shift down when this one moves up,
557                    // so "insert before index" becomes "move to index - 1",
558                    // keeping the entry at the original index unmoved.
559                    index -= 1;
560                }
561                let old = mem::replace(entry.get_mut(), value);
562                entry.move_index(index);
563                (index, Some(old))
564            }
565            Entry::Vacant(entry) => {
566                entry.shift_insert(index, value);
567                (index, None)
568            }
569        }
570    }
571
572    /// Insert a key-value pair in the map at the given index.
573    ///
574    /// If an equivalent key already exists in the map: the key remains and
575    /// is moved to the given index in the map, its corresponding value is updated
576    /// with `value`, and the older value is returned inside `Some(_)`.
577    /// Note that existing entries **cannot** be moved to `index == map.len()`!
578    /// (See [`insert_before`](Self::insert_before) for different behavior here.)
579    ///
580    /// If no equivalent key existed in the map: the new key-value pair is
581    /// inserted at the given index, and `None` is returned.
582    ///
583    /// ***Panics*** if `index` is out of bounds.
584    /// Valid indices are `0..map.len()` (exclusive) when moving an existing entry, or
585    /// `0..=map.len()` (inclusive) when inserting a new key.
586    ///
587    /// Computes in **O(n)** time (average).
588    ///
589    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
590    /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
591    ///
592    /// # Examples
593    ///
594    /// ```
595    /// use indexmap::IndexMap;
596    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
597    ///
598    /// // The new key '*' goes exactly at the given index.
599    /// assert_eq!(map.get_index_of(&'*'), None);
600    /// assert_eq!(map.shift_insert(10, '*', ()), None);
601    /// assert_eq!(map.get_index_of(&'*'), Some(10));
602    ///
603    /// // Moving the key 'a' up to 10 will shift others down, including the '*' that was at 10.
604    /// assert_eq!(map.shift_insert(10, 'a', ()), Some(()));
605    /// assert_eq!(map.get_index_of(&'a'), Some(10));
606    /// assert_eq!(map.get_index_of(&'*'), Some(9));
607    ///
608    /// // Moving the key 'z' down to 9 will shift others up, including the '*' that was at 9.
609    /// assert_eq!(map.shift_insert(9, 'z', ()), Some(()));
610    /// assert_eq!(map.get_index_of(&'z'), Some(9));
611    /// assert_eq!(map.get_index_of(&'*'), Some(10));
612    ///
613    /// // Existing keys can move to len-1 at most, but new keys can insert at the endpoint.
614    /// assert_eq!(map.len(), 27);
615    /// assert_eq!(map.shift_insert(map.len() - 1, '*', ()), Some(()));
616    /// assert_eq!(map.get_index_of(&'*'), Some(26));
617    /// assert_eq!(map.shift_insert(map.len(), '+', ()), None);
618    /// assert_eq!(map.get_index_of(&'+'), Some(27));
619    /// assert_eq!(map.len(), 28);
620    /// ```
621    ///
622    /// ```should_panic
623    /// use indexmap::IndexMap;
624    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
625    ///
626    /// // This is an invalid index for moving an existing key!
627    /// map.shift_insert(map.len(), 'a', ());
628    /// ```
629    #[track_caller]
630    pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V> {
631        let len = self.len();
632        match self.entry(key) {
633            Entry::Occupied(mut entry) => {
634                assert!(
635                    index < len,
636                    "index out of bounds: the len is {len} but the index is {index}"
637                );
638
639                let old = mem::replace(entry.get_mut(), value);
640                entry.move_index(index);
641                Some(old)
642            }
643            Entry::Vacant(entry) => {
644                assert!(
645                    index <= len,
646                    "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
647                );
648
649                entry.shift_insert(index, value);
650                None
651            }
652        }
653    }
654
655    /// Get the given key’s corresponding entry in the map for insertion and/or
656    /// in-place manipulation.
657    ///
658    /// Computes in **O(1)** time (amortized average).
659    pub fn entry(&mut self, key: K) -> Entry<'_, K, V> {
660        let hash = self.hash(&key);
661        self.core.entry(hash, key)
662    }
663
664    /// Creates a splicing iterator that replaces the specified range in the map
665    /// with the given `replace_with` key-value iterator and yields the removed
666    /// items. `replace_with` does not need to be the same length as `range`.
667    ///
668    /// The `range` is removed even if the iterator is not consumed until the
669    /// end. It is unspecified how many elements are removed from the map if the
670    /// `Splice` value is leaked.
671    ///
672    /// The input iterator `replace_with` is only consumed when the `Splice`
673    /// value is dropped. If a key from the iterator matches an existing entry
674    /// in the map (outside of `range`), then the value will be updated in that
675    /// position. Otherwise, the new key-value pair will be inserted in the
676    /// replaced `range`.
677    ///
678    /// ***Panics*** if the starting point is greater than the end point or if
679    /// the end point is greater than the length of the map.
680    ///
681    /// # Examples
682    ///
683    /// ```
684    /// use indexmap::IndexMap;
685    ///
686    /// let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]);
687    /// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')];
688    /// let removed: Vec<_> = map.splice(2..4, new).collect();
689    ///
690    /// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted.
691    /// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')]));
692    /// assert_eq!(removed, &[(2, 'b'), (3, 'c')]);
693    /// ```
694    #[track_caller]
695    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S>
696    where
697        R: RangeBounds<usize>,
698        I: IntoIterator<Item = (K, V)>,
699    {
700        Splice::new(self, range, replace_with.into_iter())
701    }
702
703    /// Moves all key-value pairs from `other` into `self`, leaving `other` empty.
704    ///
705    /// This is equivalent to calling [`insert`][Self::insert] for each
706    /// key-value pair from `other` in order, which means that for keys that
707    /// already exist in `self`, their value is updated in the current position.
708    ///
709    /// # Examples
710    ///
711    /// ```
712    /// use indexmap::IndexMap;
713    ///
714    /// // Note: Key (3) is present in both maps.
715    /// let mut a = IndexMap::from([(3, "c"), (2, "b"), (1, "a")]);
716    /// let mut b = IndexMap::from([(3, "d"), (4, "e"), (5, "f")]);
717    /// let old_capacity = b.capacity();
718    ///
719    /// a.append(&mut b);
720    ///
721    /// assert_eq!(a.len(), 5);
722    /// assert_eq!(b.len(), 0);
723    /// assert_eq!(b.capacity(), old_capacity);
724    ///
725    /// assert!(a.keys().eq(&[3, 2, 1, 4, 5]));
726    /// assert_eq!(a[&3], "d"); // "c" was overwritten.
727    /// ```
728    pub fn append<S2>(&mut self, other: &mut IndexMap<K, V, S2>) {
729        self.extend(other.drain(..));
730    }
731}
732
733impl<K, V, S> IndexMap<K, V, S>
734where
735    S: BuildHasher,
736{
737    pub(crate) fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue {
738        let mut h = self.hash_builder.build_hasher();
739        key.hash(&mut h);
740        HashValue(h.finish() as usize)
741    }
742
743    /// Return `true` if an equivalent to `key` exists in the map.
744    ///
745    /// Computes in **O(1)** time (average).
746    pub fn contains_key<Q>(&self, key: &Q) -> bool
747    where
748        Q: ?Sized + Hash + Equivalent<K>,
749    {
750        self.get_index_of(key).is_some()
751    }
752
753    /// Return a reference to the value stored for `key`, if it is present,
754    /// else `None`.
755    ///
756    /// Computes in **O(1)** time (average).
757    pub fn get<Q>(&self, key: &Q) -> Option<&V>
758    where
759        Q: ?Sized + Hash + Equivalent<K>,
760    {
761        if let Some(i) = self.get_index_of(key) {
762            let entry = &self.as_entries()[i];
763            Some(&entry.value)
764        } else {
765            None
766        }
767    }
768
769    /// Return references to the key-value pair stored for `key`,
770    /// if it is present, else `None`.
771    ///
772    /// Computes in **O(1)** time (average).
773    pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
774    where
775        Q: ?Sized + Hash + Equivalent<K>,
776    {
777        if let Some(i) = self.get_index_of(key) {
778            let entry = &self.as_entries()[i];
779            Some((&entry.key, &entry.value))
780        } else {
781            None
782        }
783    }
784
785    /// Return item index, key and value
786    pub fn get_full<Q>(&self, key: &Q) -> Option<(usize, &K, &V)>
787    where
788        Q: ?Sized + Hash + Equivalent<K>,
789    {
790        if let Some(i) = self.get_index_of(key) {
791            let entry = &self.as_entries()[i];
792            Some((i, &entry.key, &entry.value))
793        } else {
794            None
795        }
796    }
797
798    /// Return item index, if it exists in the map
799    ///
800    /// Computes in **O(1)** time (average).
801    pub fn get_index_of<Q>(&self, key: &Q) -> Option<usize>
802    where
803        Q: ?Sized + Hash + Equivalent<K>,
804    {
805        match self.as_entries() {
806            [] => None,
807            [x] => key.equivalent(&x.key).then_some(0),
808            _ => {
809                let hash = self.hash(key);
810                self.core.get_index_of(hash, key)
811            }
812        }
813    }
814
815    pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
816    where
817        Q: ?Sized + Hash + Equivalent<K>,
818    {
819        if let Some(i) = self.get_index_of(key) {
820            let entry = &mut self.as_entries_mut()[i];
821            Some(&mut entry.value)
822        } else {
823            None
824        }
825    }
826
827    pub fn get_full_mut<Q>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)>
828    where
829        Q: ?Sized + Hash + Equivalent<K>,
830    {
831        if let Some(i) = self.get_index_of(key) {
832            let entry = &mut self.as_entries_mut()[i];
833            Some((i, &entry.key, &mut entry.value))
834        } else {
835            None
836        }
837    }
838
839    /// Return the values for `N` keys. If any key is duplicated, this function will panic.
840    ///
841    /// # Examples
842    ///
843    /// ```
844    /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
845    /// assert_eq!(map.get_disjoint_mut([&2, &1]), [Some(&mut 'c'), Some(&mut 'a')]);
846    /// ```
847    pub fn get_disjoint_mut<Q, const N: usize>(&mut self, keys: [&Q; N]) -> [Option<&mut V>; N]
848    where
849        Q: ?Sized + Hash + Equivalent<K>,
850    {
851        let indices = keys.map(|key| self.get_index_of(key));
852        match self.as_mut_slice().get_disjoint_opt_mut(indices) {
853            Err(GetDisjointMutError::IndexOutOfBounds) => {
854                unreachable!(
855                    "Internal error: indices should never be OOB as we got them from get_index_of"
856                );
857            }
858            Err(GetDisjointMutError::OverlappingIndices) => {
859                panic!("duplicate keys found");
860            }
861            Ok(key_values) => key_values.map(|kv_opt| kv_opt.map(|kv| kv.1)),
862        }
863    }
864
865    /// Remove the key-value pair equivalent to `key` and return
866    /// its value.
867    ///
868    /// **NOTE:** This is equivalent to [`.swap_remove(key)`][Self::swap_remove], replacing this
869    /// entry's position with the last element, and it is deprecated in favor of calling that
870    /// explicitly. If you need to preserve the relative order of the keys in the map, use
871    /// [`.shift_remove(key)`][Self::shift_remove] instead.
872    #[deprecated(note = "`remove` disrupts the map order -- \
873        use `swap_remove` or `shift_remove` for explicit behavior.")]
874    pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
875    where
876        Q: ?Sized + Hash + Equivalent<K>,
877    {
878        self.swap_remove(key)
879    }
880
881    /// Remove and return the key-value pair equivalent to `key`.
882    ///
883    /// **NOTE:** This is equivalent to [`.swap_remove_entry(key)`][Self::swap_remove_entry],
884    /// replacing this entry's position with the last element, and it is deprecated in favor of
885    /// calling that explicitly. If you need to preserve the relative order of the keys in the map,
886    /// use [`.shift_remove_entry(key)`][Self::shift_remove_entry] instead.
887    #[deprecated(note = "`remove_entry` disrupts the map order -- \
888        use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")]
889    pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
890    where
891        Q: ?Sized + Hash + Equivalent<K>,
892    {
893        self.swap_remove_entry(key)
894    }
895
896    /// Remove the key-value pair equivalent to `key` and return
897    /// its value.
898    ///
899    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
900    /// last element of the map and popping it off. **This perturbs
901    /// the position of what used to be the last element!**
902    ///
903    /// Return `None` if `key` is not in map.
904    ///
905    /// Computes in **O(1)** time (average).
906    pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V>
907    where
908        Q: ?Sized + Hash + Equivalent<K>,
909    {
910        self.swap_remove_full(key).map(third)
911    }
912
913    /// Remove and return the key-value pair equivalent to `key`.
914    ///
915    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
916    /// last element of the map and popping it off. **This perturbs
917    /// the position of what used to be the last element!**
918    ///
919    /// Return `None` if `key` is not in map.
920    ///
921    /// Computes in **O(1)** time (average).
922    pub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
923    where
924        Q: ?Sized + Hash + Equivalent<K>,
925    {
926        match self.swap_remove_full(key) {
927            Some((_, key, value)) => Some((key, value)),
928            None => None,
929        }
930    }
931
932    /// Remove the key-value pair equivalent to `key` and return it and
933    /// the index it had.
934    ///
935    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
936    /// last element of the map and popping it off. **This perturbs
937    /// the position of what used to be the last element!**
938    ///
939    /// Return `None` if `key` is not in map.
940    ///
941    /// Computes in **O(1)** time (average).
942    pub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
943    where
944        Q: ?Sized + Hash + Equivalent<K>,
945    {
946        match self.as_entries() {
947            [x] if key.equivalent(&x.key) => {
948                let (k, v) = self.core.pop()?;
949                Some((0, k, v))
950            }
951            [_] | [] => None,
952            _ => {
953                let hash = self.hash(key);
954                self.core.swap_remove_full(hash, key)
955            }
956        }
957    }
958
959    /// Remove the key-value pair equivalent to `key` and return
960    /// its value.
961    ///
962    /// Like [`Vec::remove`], the pair is removed by shifting all of the
963    /// elements that follow it, preserving their relative order.
964    /// **This perturbs the index of all of those elements!**
965    ///
966    /// Return `None` if `key` is not in map.
967    ///
968    /// Computes in **O(n)** time (average).
969    pub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V>
970    where
971        Q: ?Sized + Hash + Equivalent<K>,
972    {
973        self.shift_remove_full(key).map(third)
974    }
975
976    /// Remove and return the key-value pair equivalent to `key`.
977    ///
978    /// Like [`Vec::remove`], the pair is removed by shifting all of the
979    /// elements that follow it, preserving their relative order.
980    /// **This perturbs the index of all of those elements!**
981    ///
982    /// Return `None` if `key` is not in map.
983    ///
984    /// Computes in **O(n)** time (average).
985    pub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
986    where
987        Q: ?Sized + Hash + Equivalent<K>,
988    {
989        match self.shift_remove_full(key) {
990            Some((_, key, value)) => Some((key, value)),
991            None => None,
992        }
993    }
994
995    /// Remove the key-value pair equivalent to `key` and return it and
996    /// the index it had.
997    ///
998    /// Like [`Vec::remove`], the pair is removed by shifting all of the
999    /// elements that follow it, preserving their relative order.
1000    /// **This perturbs the index of all of those elements!**
1001    ///
1002    /// Return `None` if `key` is not in map.
1003    ///
1004    /// Computes in **O(n)** time (average).
1005    pub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1006    where
1007        Q: ?Sized + Hash + Equivalent<K>,
1008    {
1009        match self.as_entries() {
1010            [x] if key.equivalent(&x.key) => {
1011                let (k, v) = self.core.pop()?;
1012                Some((0, k, v))
1013            }
1014            [_] | [] => None,
1015            _ => {
1016                let hash = self.hash(key);
1017                self.core.shift_remove_full(hash, key)
1018            }
1019        }
1020    }
1021}
1022
1023impl<K, V, S> IndexMap<K, V, S> {
1024    /// Remove the last key-value pair
1025    ///
1026    /// This preserves the order of the remaining elements.
1027    ///
1028    /// Computes in **O(1)** time (average).
1029    #[doc(alias = "pop_last")] // like `BTreeMap`
1030    pub fn pop(&mut self) -> Option<(K, V)> {
1031        self.core.pop()
1032    }
1033
1034    /// Scan through each key-value pair in the map and keep those where the
1035    /// closure `keep` returns `true`.
1036    ///
1037    /// The elements are visited in order, and remaining elements keep their
1038    /// order.
1039    ///
1040    /// Computes in **O(n)** time (average).
1041    pub fn retain<F>(&mut self, mut keep: F)
1042    where
1043        F: FnMut(&K, &mut V) -> bool,
1044    {
1045        self.core.retain_in_order(move |k, v| keep(k, v));
1046    }
1047
1048    /// Sort the map’s key-value pairs by the default ordering of the keys.
1049    ///
1050    /// This is a stable sort -- but equivalent keys should not normally coexist in
1051    /// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred
1052    /// because it is generally faster and doesn't allocate auxiliary memory.
1053    ///
1054    /// See [`sort_by`](Self::sort_by) for details.
1055    pub fn sort_keys(&mut self)
1056    where
1057        K: Ord,
1058    {
1059        self.with_entries(move |entries| {
1060            entries.sort_by(move |a, b| K::cmp(&a.key, &b.key));
1061        });
1062    }
1063
1064    /// Sort the map’s key-value pairs in place using the comparison
1065    /// function `cmp`.
1066    ///
1067    /// The comparison function receives two key and value pairs to compare (you
1068    /// can sort by keys or values or their combination as needed).
1069    ///
1070    /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1071    /// the length of the map and *c* the capacity. The sort is stable.
1072    pub fn sort_by<F>(&mut self, mut cmp: F)
1073    where
1074        F: FnMut(&K, &V, &K, &V) -> Ordering,
1075    {
1076        self.with_entries(move |entries| {
1077            entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1078        });
1079    }
1080
1081    /// Sort the key-value pairs of the map and return a by-value iterator of
1082    /// the key-value pairs with the result.
1083    ///
1084    /// The sort is stable.
1085    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1086    where
1087        F: FnMut(&K, &V, &K, &V) -> Ordering,
1088    {
1089        let mut entries = self.into_entries();
1090        entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1091        IntoIter::new(entries)
1092    }
1093
1094    /// Sort the map's key-value pairs by the default ordering of the keys, but
1095    /// may not preserve the order of equal elements.
1096    ///
1097    /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
1098    pub fn sort_unstable_keys(&mut self)
1099    where
1100        K: Ord,
1101    {
1102        self.with_entries(move |entries| {
1103            entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key));
1104        });
1105    }
1106
1107    /// Sort the map's key-value pairs in place using the comparison function `cmp`, but
1108    /// may not preserve the order of equal elements.
1109    ///
1110    /// The comparison function receives two key and value pairs to compare (you
1111    /// can sort by keys or values or their combination as needed).
1112    ///
1113    /// Computes in **O(n log n + c)** time where *n* is
1114    /// the length of the map and *c* is the capacity. The sort is unstable.
1115    pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
1116    where
1117        F: FnMut(&K, &V, &K, &V) -> Ordering,
1118    {
1119        self.with_entries(move |entries| {
1120            entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1121        });
1122    }
1123
1124    /// Sort the key-value pairs of the map and return a by-value iterator of
1125    /// the key-value pairs with the result.
1126    ///
1127    /// The sort is unstable.
1128    #[inline]
1129    pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1130    where
1131        F: FnMut(&K, &V, &K, &V) -> Ordering,
1132    {
1133        let mut entries = self.into_entries();
1134        entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1135        IntoIter::new(entries)
1136    }
1137
1138    /// Sort the map’s key-value pairs in place using a sort-key extraction function.
1139    ///
1140    /// During sorting, the function is called at most once per entry, by using temporary storage
1141    /// to remember the results of its evaluation. The order of calls to the function is
1142    /// unspecified and may change between versions of `indexmap` or the standard library.
1143    ///
1144    /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1145    /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1146    pub fn sort_by_cached_key<T, F>(&mut self, mut sort_key: F)
1147    where
1148        T: Ord,
1149        F: FnMut(&K, &V) -> T,
1150    {
1151        self.with_entries(move |entries| {
1152            entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value));
1153        });
1154    }
1155
1156    /// Search over a sorted map for a key.
1157    ///
1158    /// Returns the position where that key is present, or the position where it can be inserted to
1159    /// maintain the sort. See [`slice::binary_search`] for more details.
1160    ///
1161    /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up
1162    /// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys.
1163    pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize>
1164    where
1165        K: Ord,
1166    {
1167        self.as_slice().binary_search_keys(x)
1168    }
1169
1170    /// Search over a sorted map with a comparator function.
1171    ///
1172    /// Returns the position where that value is present, or the position where it can be inserted
1173    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1174    ///
1175    /// Computes in **O(log(n))** time.
1176    #[inline]
1177    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1178    where
1179        F: FnMut(&'a K, &'a V) -> Ordering,
1180    {
1181        self.as_slice().binary_search_by(f)
1182    }
1183
1184    /// Search over a sorted map with an extraction function.
1185    ///
1186    /// Returns the position where that value is present, or the position where it can be inserted
1187    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1188    ///
1189    /// Computes in **O(log(n))** time.
1190    #[inline]
1191    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1192    where
1193        F: FnMut(&'a K, &'a V) -> B,
1194        B: Ord,
1195    {
1196        self.as_slice().binary_search_by_key(b, f)
1197    }
1198
1199    /// Returns the index of the partition point of a sorted map according to the given predicate
1200    /// (the index of the first element of the second partition).
1201    ///
1202    /// See [`slice::partition_point`] for more details.
1203    ///
1204    /// Computes in **O(log(n))** time.
1205    #[must_use]
1206    pub fn partition_point<P>(&self, pred: P) -> usize
1207    where
1208        P: FnMut(&K, &V) -> bool,
1209    {
1210        self.as_slice().partition_point(pred)
1211    }
1212
1213    /// Reverses the order of the map’s key-value pairs in place.
1214    ///
1215    /// Computes in **O(n)** time and **O(1)** space.
1216    pub fn reverse(&mut self) {
1217        self.core.reverse()
1218    }
1219
1220    /// Returns a slice of all the key-value pairs in the map.
1221    ///
1222    /// Computes in **O(1)** time.
1223    pub fn as_slice(&self) -> &Slice<K, V> {
1224        Slice::from_slice(self.as_entries())
1225    }
1226
1227    /// Returns a mutable slice of all the key-value pairs in the map.
1228    ///
1229    /// Computes in **O(1)** time.
1230    pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> {
1231        Slice::from_mut_slice(self.as_entries_mut())
1232    }
1233
1234    /// Converts into a boxed slice of all the key-value pairs in the map.
1235    ///
1236    /// Note that this will drop the inner hash table and any excess capacity.
1237    pub fn into_boxed_slice(self) -> Box<Slice<K, V>> {
1238        Slice::from_boxed(self.into_entries().into_boxed_slice())
1239    }
1240
1241    /// Get a key-value pair by index
1242    ///
1243    /// Valid indices are `0 <= index < self.len()`.
1244    ///
1245    /// Computes in **O(1)** time.
1246    pub fn get_index(&self, index: usize) -> Option<(&K, &V)> {
1247        self.as_entries().get(index).map(Bucket::refs)
1248    }
1249
1250    /// Get a key-value pair by index
1251    ///
1252    /// Valid indices are `0 <= index < self.len()`.
1253    ///
1254    /// Computes in **O(1)** time.
1255    pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> {
1256        self.as_entries_mut().get_mut(index).map(Bucket::ref_mut)
1257    }
1258
1259    /// Get an entry in the map by index for in-place manipulation.
1260    ///
1261    /// Valid indices are `0 <= index < self.len()`.
1262    ///
1263    /// Computes in **O(1)** time.
1264    pub fn get_index_entry(&mut self, index: usize) -> Option<IndexedEntry<'_, K, V>> {
1265        if index >= self.len() {
1266            return None;
1267        }
1268        Some(IndexedEntry::new(&mut self.core, index))
1269    }
1270
1271    /// Get an array of `N` key-value pairs by `N` indices
1272    ///
1273    /// Valid indices are *0 <= index < self.len()* and each index needs to be unique.
1274    ///
1275    /// # Examples
1276    ///
1277    /// ```
1278    /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
1279    /// assert_eq!(map.get_disjoint_indices_mut([2, 0]), Ok([(&2, &mut 'c'), (&1, &mut 'a')]));
1280    /// ```
1281    pub fn get_disjoint_indices_mut<const N: usize>(
1282        &mut self,
1283        indices: [usize; N],
1284    ) -> Result<[(&K, &mut V); N], GetDisjointMutError> {
1285        self.as_mut_slice().get_disjoint_mut(indices)
1286    }
1287
1288    /// Returns a slice of key-value pairs in the given range of indices.
1289    ///
1290    /// Valid indices are `0 <= index < self.len()`.
1291    ///
1292    /// Computes in **O(1)** time.
1293    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<K, V>> {
1294        let entries = self.as_entries();
1295        let range = try_simplify_range(range, entries.len())?;
1296        entries.get(range).map(Slice::from_slice)
1297    }
1298
1299    /// Returns a mutable slice of key-value pairs in the given range of indices.
1300    ///
1301    /// Valid indices are `0 <= index < self.len()`.
1302    ///
1303    /// Computes in **O(1)** time.
1304    pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Slice<K, V>> {
1305        let entries = self.as_entries_mut();
1306        let range = try_simplify_range(range, entries.len())?;
1307        entries.get_mut(range).map(Slice::from_mut_slice)
1308    }
1309
1310    /// Get the first key-value pair
1311    ///
1312    /// Computes in **O(1)** time.
1313    #[doc(alias = "first_key_value")] // like `BTreeMap`
1314    pub fn first(&self) -> Option<(&K, &V)> {
1315        self.as_entries().first().map(Bucket::refs)
1316    }
1317
1318    /// Get the first key-value pair, with mutable access to the value
1319    ///
1320    /// Computes in **O(1)** time.
1321    pub fn first_mut(&mut self) -> Option<(&K, &mut V)> {
1322        self.as_entries_mut().first_mut().map(Bucket::ref_mut)
1323    }
1324
1325    /// Get the first entry in the map for in-place manipulation.
1326    ///
1327    /// Computes in **O(1)** time.
1328    pub fn first_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1329        self.get_index_entry(0)
1330    }
1331
1332    /// Get the last key-value pair
1333    ///
1334    /// Computes in **O(1)** time.
1335    #[doc(alias = "last_key_value")] // like `BTreeMap`
1336    pub fn last(&self) -> Option<(&K, &V)> {
1337        self.as_entries().last().map(Bucket::refs)
1338    }
1339
1340    /// Get the last key-value pair, with mutable access to the value
1341    ///
1342    /// Computes in **O(1)** time.
1343    pub fn last_mut(&mut self) -> Option<(&K, &mut V)> {
1344        self.as_entries_mut().last_mut().map(Bucket::ref_mut)
1345    }
1346
1347    /// Get the last entry in the map for in-place manipulation.
1348    ///
1349    /// Computes in **O(1)** time.
1350    pub fn last_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1351        self.get_index_entry(self.len().checked_sub(1)?)
1352    }
1353
1354    /// Remove the key-value pair by index
1355    ///
1356    /// Valid indices are `0 <= index < self.len()`.
1357    ///
1358    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1359    /// last element of the map and popping it off. **This perturbs
1360    /// the position of what used to be the last element!**
1361    ///
1362    /// Computes in **O(1)** time (average).
1363    pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1364        self.core.swap_remove_index(index)
1365    }
1366
1367    /// Remove the key-value pair by index
1368    ///
1369    /// Valid indices are `0 <= index < self.len()`.
1370    ///
1371    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1372    /// elements that follow it, preserving their relative order.
1373    /// **This perturbs the index of all of those elements!**
1374    ///
1375    /// Computes in **O(n)** time (average).
1376    pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1377        self.core.shift_remove_index(index)
1378    }
1379
1380    /// Moves the position of a key-value pair from one index to another
1381    /// by shifting all other pairs in-between.
1382    ///
1383    /// * If `from < to`, the other pairs will shift down while the targeted pair moves up.
1384    /// * If `from > to`, the other pairs will shift up while the targeted pair moves down.
1385    ///
1386    /// ***Panics*** if `from` or `to` are out of bounds.
1387    ///
1388    /// Computes in **O(n)** time (average).
1389    #[track_caller]
1390    pub fn move_index(&mut self, from: usize, to: usize) {
1391        self.core.move_index(from, to)
1392    }
1393
1394    /// Swaps the position of two key-value pairs in the map.
1395    ///
1396    /// ***Panics*** if `a` or `b` are out of bounds.
1397    ///
1398    /// Computes in **O(1)** time (average).
1399    #[track_caller]
1400    pub fn swap_indices(&mut self, a: usize, b: usize) {
1401        self.core.swap_indices(a, b)
1402    }
1403}
1404
1405/// Access [`IndexMap`] values corresponding to a key.
1406///
1407/// # Examples
1408///
1409/// ```
1410/// use indexmap::IndexMap;
1411///
1412/// let mut map = IndexMap::new();
1413/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1414///     map.insert(word.to_lowercase(), word.to_uppercase());
1415/// }
1416/// assert_eq!(map["lorem"], "LOREM");
1417/// assert_eq!(map["ipsum"], "IPSUM");
1418/// ```
1419///
1420/// ```should_panic
1421/// use indexmap::IndexMap;
1422///
1423/// let mut map = IndexMap::new();
1424/// map.insert("foo", 1);
1425/// println!("{:?}", map["bar"]); // panics!
1426/// ```
1427impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S>
1428where
1429    Q: Hash + Equivalent<K>,
1430    S: BuildHasher,
1431{
1432    type Output = V;
1433
1434    /// Returns a reference to the value corresponding to the supplied `key`.
1435    ///
1436    /// ***Panics*** if `key` is not present in the map.
1437    fn index(&self, key: &Q) -> &V {
1438        self.get(key).expect("no entry found for key")
1439    }
1440}
1441
1442/// Access [`IndexMap`] values corresponding to a key.
1443///
1444/// Mutable indexing allows changing / updating values of key-value
1445/// pairs that are already present.
1446///
1447/// You can **not** insert new pairs with index syntax, use `.insert()`.
1448///
1449/// # Examples
1450///
1451/// ```
1452/// use indexmap::IndexMap;
1453///
1454/// let mut map = IndexMap::new();
1455/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1456///     map.insert(word.to_lowercase(), word.to_string());
1457/// }
1458/// let lorem = &mut map["lorem"];
1459/// assert_eq!(lorem, "Lorem");
1460/// lorem.retain(char::is_lowercase);
1461/// assert_eq!(map["lorem"], "orem");
1462/// ```
1463///
1464/// ```should_panic
1465/// use indexmap::IndexMap;
1466///
1467/// let mut map = IndexMap::new();
1468/// map.insert("foo", 1);
1469/// map["bar"] = 1; // panics!
1470/// ```
1471impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S>
1472where
1473    Q: Hash + Equivalent<K>,
1474    S: BuildHasher,
1475{
1476    /// Returns a mutable reference to the value corresponding to the supplied `key`.
1477    ///
1478    /// ***Panics*** if `key` is not present in the map.
1479    fn index_mut(&mut self, key: &Q) -> &mut V {
1480        self.get_mut(key).expect("no entry found for key")
1481    }
1482}
1483
1484/// Access [`IndexMap`] values at indexed positions.
1485///
1486/// See [`Index<usize> for Keys`][keys] to access a map's keys instead.
1487///
1488/// [keys]: Keys#impl-Index<usize>-for-Keys<'a,+K,+V>
1489///
1490/// # Examples
1491///
1492/// ```
1493/// use indexmap::IndexMap;
1494///
1495/// let mut map = IndexMap::new();
1496/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1497///     map.insert(word.to_lowercase(), word.to_uppercase());
1498/// }
1499/// assert_eq!(map[0], "LOREM");
1500/// assert_eq!(map[1], "IPSUM");
1501/// map.reverse();
1502/// assert_eq!(map[0], "AMET");
1503/// assert_eq!(map[1], "SIT");
1504/// map.sort_keys();
1505/// assert_eq!(map[0], "AMET");
1506/// assert_eq!(map[1], "DOLOR");
1507/// ```
1508///
1509/// ```should_panic
1510/// use indexmap::IndexMap;
1511///
1512/// let mut map = IndexMap::new();
1513/// map.insert("foo", 1);
1514/// println!("{:?}", map[10]); // panics!
1515/// ```
1516impl<K, V, S> Index<usize> for IndexMap<K, V, S> {
1517    type Output = V;
1518
1519    /// Returns a reference to the value at the supplied `index`.
1520    ///
1521    /// ***Panics*** if `index` is out of bounds.
1522    fn index(&self, index: usize) -> &V {
1523        if let Some((_, value)) = self.get_index(index) {
1524            value
1525        } else {
1526            panic!(
1527                "index out of bounds: the len is {len} but the index is {index}",
1528                len = self.len()
1529            );
1530        }
1531    }
1532}
1533
1534/// Access [`IndexMap`] values at indexed positions.
1535///
1536/// Mutable indexing allows changing / updating indexed values
1537/// that are already present.
1538///
1539/// You can **not** insert new values with index syntax -- use [`.insert()`][IndexMap::insert].
1540///
1541/// # Examples
1542///
1543/// ```
1544/// use indexmap::IndexMap;
1545///
1546/// let mut map = IndexMap::new();
1547/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1548///     map.insert(word.to_lowercase(), word.to_string());
1549/// }
1550/// let lorem = &mut map[0];
1551/// assert_eq!(lorem, "Lorem");
1552/// lorem.retain(char::is_lowercase);
1553/// assert_eq!(map["lorem"], "orem");
1554/// ```
1555///
1556/// ```should_panic
1557/// use indexmap::IndexMap;
1558///
1559/// let mut map = IndexMap::new();
1560/// map.insert("foo", 1);
1561/// map[10] = 1; // panics!
1562/// ```
1563impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> {
1564    /// Returns a mutable reference to the value at the supplied `index`.
1565    ///
1566    /// ***Panics*** if `index` is out of bounds.
1567    fn index_mut(&mut self, index: usize) -> &mut V {
1568        let len: usize = self.len();
1569
1570        if let Some((_, value)) = self.get_index_mut(index) {
1571            value
1572        } else {
1573            panic!("index out of bounds: the len is {len} but the index is {index}");
1574        }
1575    }
1576}
1577
1578impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S>
1579where
1580    K: Hash + Eq,
1581    S: BuildHasher + Default,
1582{
1583    /// Create an `IndexMap` from the sequence of key-value pairs in the
1584    /// iterable.
1585    ///
1586    /// `from_iter` uses the same logic as `extend`. See
1587    /// [`extend`][IndexMap::extend] for more details.
1588    fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self {
1589        let iter = iterable.into_iter();
1590        let (low, _) = iter.size_hint();
1591        let mut map = Self::with_capacity_and_hasher(low, <_>::default());
1592        map.extend(iter);
1593        map
1594    }
1595}
1596
1597#[cfg(feature = "std")]
1598#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1599impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState>
1600where
1601    K: Hash + Eq,
1602{
1603    /// # Examples
1604    ///
1605    /// ```
1606    /// use indexmap::IndexMap;
1607    ///
1608    /// let map1 = IndexMap::from([(1, 2), (3, 4)]);
1609    /// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into();
1610    /// assert_eq!(map1, map2);
1611    /// ```
1612    fn from(arr: [(K, V); N]) -> Self {
1613        Self::from_iter(arr)
1614    }
1615}
1616
1617impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S>
1618where
1619    K: Hash + Eq,
1620    S: BuildHasher,
1621{
1622    /// Extend the map with all key-value pairs in the iterable.
1623    ///
1624    /// This is equivalent to calling [`insert`][IndexMap::insert] for each of
1625    /// them in order, which means that for keys that already existed
1626    /// in the map, their value is updated but it keeps the existing order.
1627    ///
1628    /// New keys are inserted in the order they appear in the sequence. If
1629    /// equivalents of a key occur more than once, the last corresponding value
1630    /// prevails.
1631    fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) {
1632        // (Note: this is a copy of `std`/`hashbrown`'s reservation logic.)
1633        // Keys may be already present or show multiple times in the iterator.
1634        // Reserve the entire hint lower bound if the map is empty.
1635        // Otherwise reserve half the hint (rounded up), so the map
1636        // will only resize twice in the worst case.
1637        let iter = iterable.into_iter();
1638        let reserve = if self.is_empty() {
1639            iter.size_hint().0
1640        } else {
1641            (iter.size_hint().0 + 1) / 2
1642        };
1643        self.reserve(reserve);
1644        iter.for_each(move |(k, v)| {
1645            self.insert(k, v);
1646        });
1647    }
1648}
1649
1650impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S>
1651where
1652    K: Hash + Eq + Copy,
1653    V: Copy,
1654    S: BuildHasher,
1655{
1656    /// Extend the map with all key-value pairs in the iterable.
1657    ///
1658    /// See the first extend method for more details.
1659    fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) {
1660        self.extend(iterable.into_iter().map(|(&key, &value)| (key, value)));
1661    }
1662}
1663
1664impl<K, V, S> Default for IndexMap<K, V, S>
1665where
1666    S: Default,
1667{
1668    /// Return an empty [`IndexMap`]
1669    fn default() -> Self {
1670        Self::with_capacity_and_hasher(0, S::default())
1671    }
1672}
1673
1674impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1>
1675where
1676    K: Hash + Eq,
1677    V1: PartialEq<V2>,
1678    S1: BuildHasher,
1679    S2: BuildHasher,
1680{
1681    fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool {
1682        if self.len() != other.len() {
1683            return false;
1684        }
1685
1686        self.iter()
1687            .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
1688    }
1689}
1690
1691impl<K, V, S> Eq for IndexMap<K, V, S>
1692where
1693    K: Eq + Hash,
1694    V: Eq,
1695    S: BuildHasher,
1696{
1697}