indexmap/set.rs
1//! A hash set implemented using [`IndexMap`]
2
3mod iter;
4mod mutable;
5mod slice;
6
7#[cfg(test)]
8mod tests;
9
10pub use self::iter::{
11 Difference, Drain, ExtractIf, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union,
12};
13pub use self::mutable::MutableValues;
14pub use self::slice::Slice;
15
16#[cfg(feature = "rayon")]
17pub use crate::rayon::set as rayon;
18use crate::TryReserveError;
19
20#[cfg(feature = "std")]
21use std::collections::hash_map::RandomState;
22
23use crate::util::try_simplify_range;
24use alloc::boxed::Box;
25use alloc::vec::Vec;
26use core::cmp::Ordering;
27use core::fmt;
28use core::hash::{BuildHasher, Hash};
29use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};
30
31use super::{Equivalent, IndexMap};
32
33type Bucket<T> = super::Bucket<T, ()>;
34
35/// A hash set where the iteration order of the values is independent of their
36/// hash values.
37///
38/// The interface is closely compatible with the standard
39/// [`HashSet`][std::collections::HashSet],
40/// but also has additional features.
41///
42/// # Order
43///
44/// The values have a consistent order that is determined by the sequence of
45/// insertion and removal calls on the set. The order does not depend on the
46/// values or the hash function at all. Note that insertion order and value
47/// are not affected if a re-insertion is attempted once an element is
48/// already present.
49///
50/// All iterators traverse the set *in order*. Set operation iterators like
51/// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise"
52/// operators. See their documentation for specifics.
53///
54/// The insertion order is preserved, with **notable exceptions** like the
55/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
56/// Methods such as [`.sort_by()`][Self::sort_by] of
57/// course result in a new order, depending on the sorting order.
58///
59/// # Indices
60///
61/// The values are indexed in a compact range without holes in the range
62/// `0..self.len()`. For example, the method `.get_full` looks up the index for
63/// a value, and the method `.get_index` looks up the value by index.
64///
65/// # Complexity
66///
67/// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity
68/// of the two are the same for most methods.
69///
70/// # Examples
71///
72/// ```
73/// use indexmap::IndexSet;
74///
75/// // Collects which letters appear in a sentence.
76/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
77///
78/// assert!(letters.contains(&'s'));
79/// assert!(letters.contains(&'t'));
80/// assert!(letters.contains(&'u'));
81/// assert!(!letters.contains(&'y'));
82/// ```
83#[cfg(feature = "std")]
84pub struct IndexSet<T, S = RandomState> {
85 pub(crate) map: IndexMap<T, (), S>,
86}
87#[cfg(not(feature = "std"))]
88pub struct IndexSet<T, S> {
89 pub(crate) map: IndexMap<T, (), S>,
90}
91
92impl<T, S> Clone for IndexSet<T, S>
93where
94 T: Clone,
95 S: Clone,
96{
97 fn clone(&self) -> Self {
98 IndexSet {
99 map: self.map.clone(),
100 }
101 }
102
103 fn clone_from(&mut self, other: &Self) {
104 self.map.clone_from(&other.map);
105 }
106}
107
108impl<T, S> fmt::Debug for IndexSet<T, S>
109where
110 T: fmt::Debug,
111{
112 #[cfg(not(feature = "test_debug"))]
113 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
114 f.debug_set().entries(self.iter()).finish()
115 }
116
117 #[cfg(feature = "test_debug")]
118 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
119 // Let the inner `IndexMap` print all of its details
120 f.debug_struct("IndexSet").field("map", &self.map).finish()
121 }
122}
123
124#[cfg(feature = "std")]
125#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
126impl<T> IndexSet<T> {
127 /// Create a new set. (Does not allocate.)
128 pub fn new() -> Self {
129 IndexSet {
130 map: IndexMap::new(),
131 }
132 }
133
134 /// Create a new set with capacity for `n` elements.
135 /// (Does not allocate if `n` is zero.)
136 ///
137 /// Computes in **O(n)** time.
138 pub fn with_capacity(n: usize) -> Self {
139 IndexSet {
140 map: IndexMap::with_capacity(n),
141 }
142 }
143}
144
145impl<T, S> IndexSet<T, S> {
146 /// Create a new set with capacity for `n` elements.
147 /// (Does not allocate if `n` is zero.)
148 ///
149 /// Computes in **O(n)** time.
150 pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
151 IndexSet {
152 map: IndexMap::with_capacity_and_hasher(n, hash_builder),
153 }
154 }
155
156 /// Create a new set with `hash_builder`.
157 ///
158 /// This function is `const`, so it
159 /// can be called in `static` contexts.
160 pub const fn with_hasher(hash_builder: S) -> Self {
161 IndexSet {
162 map: IndexMap::with_hasher(hash_builder),
163 }
164 }
165
166 #[inline]
167 pub(crate) fn into_entries(self) -> Vec<Bucket<T>> {
168 self.map.into_entries()
169 }
170
171 #[inline]
172 pub(crate) fn as_entries(&self) -> &[Bucket<T>] {
173 self.map.as_entries()
174 }
175
176 pub(crate) fn with_entries<F>(&mut self, f: F)
177 where
178 F: FnOnce(&mut [Bucket<T>]),
179 {
180 self.map.with_entries(f);
181 }
182
183 /// Return the number of elements the set can hold without reallocating.
184 ///
185 /// This number is a lower bound; the set might be able to hold more,
186 /// but is guaranteed to be able to hold at least this many.
187 ///
188 /// Computes in **O(1)** time.
189 pub fn capacity(&self) -> usize {
190 self.map.capacity()
191 }
192
193 /// Return a reference to the set's `BuildHasher`.
194 pub fn hasher(&self) -> &S {
195 self.map.hasher()
196 }
197
198 /// Return the number of elements in the set.
199 ///
200 /// Computes in **O(1)** time.
201 pub fn len(&self) -> usize {
202 self.map.len()
203 }
204
205 /// Returns true if the set contains no elements.
206 ///
207 /// Computes in **O(1)** time.
208 pub fn is_empty(&self) -> bool {
209 self.map.is_empty()
210 }
211
212 /// Return an iterator over the values of the set, in their order
213 pub fn iter(&self) -> Iter<'_, T> {
214 Iter::new(self.as_entries())
215 }
216
217 /// Remove all elements in the set, while preserving its capacity.
218 ///
219 /// Computes in **O(n)** time.
220 pub fn clear(&mut self) {
221 self.map.clear();
222 }
223
224 /// Shortens the set, keeping the first `len` elements and dropping the rest.
225 ///
226 /// If `len` is greater than the set's current length, this has no effect.
227 pub fn truncate(&mut self, len: usize) {
228 self.map.truncate(len);
229 }
230
231 /// Clears the `IndexSet` in the given index range, returning those values
232 /// as a drain iterator.
233 ///
234 /// The range may be any type that implements [`RangeBounds<usize>`],
235 /// including all of the `std::ops::Range*` types, or even a tuple pair of
236 /// `Bound` start and end values. To drain the set entirely, use `RangeFull`
237 /// like `set.drain(..)`.
238 ///
239 /// This shifts down all entries following the drained range to fill the
240 /// gap, and keeps the allocated memory for reuse.
241 ///
242 /// ***Panics*** if the starting point is greater than the end point or if
243 /// the end point is greater than the length of the set.
244 #[track_caller]
245 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
246 where
247 R: RangeBounds<usize>,
248 {
249 Drain::new(self.map.core.drain(range))
250 }
251
252 /// Creates an iterator which uses a closure to determine if a value should be removed,
253 /// for all values in the given range.
254 ///
255 /// If the closure returns true, then the value is removed and yielded.
256 /// If the closure returns false, the value will remain in the list and will not be yielded
257 /// by the iterator.
258 ///
259 /// The range may be any type that implements [`RangeBounds<usize>`],
260 /// including all of the `std::ops::Range*` types, or even a tuple pair of
261 /// `Bound` start and end values. To check the entire set, use `RangeFull`
262 /// like `set.extract_if(.., predicate)`.
263 ///
264 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
265 /// or the iteration short-circuits, then the remaining elements will be retained.
266 /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
267 ///
268 /// [`retain`]: IndexSet::retain
269 ///
270 /// ***Panics*** if the starting point is greater than the end point or if
271 /// the end point is greater than the length of the set.
272 ///
273 /// # Examples
274 ///
275 /// Splitting a set into even and odd values, reusing the original set:
276 ///
277 /// ```
278 /// use indexmap::IndexSet;
279 ///
280 /// let mut set: IndexSet<i32> = (0..8).collect();
281 /// let extracted: IndexSet<i32> = set.extract_if(.., |v| v % 2 == 0).collect();
282 ///
283 /// let evens = extracted.into_iter().collect::<Vec<_>>();
284 /// let odds = set.into_iter().collect::<Vec<_>>();
285 ///
286 /// assert_eq!(evens, vec![0, 2, 4, 6]);
287 /// assert_eq!(odds, vec![1, 3, 5, 7]);
288 /// ```
289 #[track_caller]
290 pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, T, F>
291 where
292 F: FnMut(&T) -> bool,
293 R: RangeBounds<usize>,
294 {
295 ExtractIf::new(&mut self.map.core, range, pred)
296 }
297
298 /// Splits the collection into two at the given index.
299 ///
300 /// Returns a newly allocated set containing the elements in the range
301 /// `[at, len)`. After the call, the original set will be left containing
302 /// the elements `[0, at)` with its previous capacity unchanged.
303 ///
304 /// ***Panics*** if `at > len`.
305 #[track_caller]
306 pub fn split_off(&mut self, at: usize) -> Self
307 where
308 S: Clone,
309 {
310 Self {
311 map: self.map.split_off(at),
312 }
313 }
314
315 /// Reserve capacity for `additional` more values.
316 ///
317 /// Computes in **O(n)** time.
318 pub fn reserve(&mut self, additional: usize) {
319 self.map.reserve(additional);
320 }
321
322 /// Reserve capacity for `additional` more values, without over-allocating.
323 ///
324 /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
325 /// frequent re-allocations. However, the underlying data structures may still have internal
326 /// capacity requirements, and the allocator itself may give more space than requested, so this
327 /// cannot be relied upon to be precisely minimal.
328 ///
329 /// Computes in **O(n)** time.
330 pub fn reserve_exact(&mut self, additional: usize) {
331 self.map.reserve_exact(additional);
332 }
333
334 /// Try to reserve capacity for `additional` more values.
335 ///
336 /// Computes in **O(n)** time.
337 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
338 self.map.try_reserve(additional)
339 }
340
341 /// Try to reserve capacity for `additional` more values, without over-allocating.
342 ///
343 /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
344 /// frequent re-allocations. However, the underlying data structures may still have internal
345 /// capacity requirements, and the allocator itself may give more space than requested, so this
346 /// cannot be relied upon to be precisely minimal.
347 ///
348 /// Computes in **O(n)** time.
349 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
350 self.map.try_reserve_exact(additional)
351 }
352
353 /// Shrink the capacity of the set as much as possible.
354 ///
355 /// Computes in **O(n)** time.
356 pub fn shrink_to_fit(&mut self) {
357 self.map.shrink_to_fit();
358 }
359
360 /// Shrink the capacity of the set with a lower limit.
361 ///
362 /// Computes in **O(n)** time.
363 pub fn shrink_to(&mut self, min_capacity: usize) {
364 self.map.shrink_to(min_capacity);
365 }
366}
367
368impl<T, S> IndexSet<T, S>
369where
370 T: Hash + Eq,
371 S: BuildHasher,
372{
373 /// Insert the value into the set.
374 ///
375 /// If an equivalent item already exists in the set, it returns
376 /// `false` leaving the original value in the set and without
377 /// altering its insertion order. Otherwise, it inserts the new
378 /// item and returns `true`.
379 ///
380 /// Computes in **O(1)** time (amortized average).
381 pub fn insert(&mut self, value: T) -> bool {
382 self.map.insert(value, ()).is_none()
383 }
384
385 /// Insert the value into the set, and get its index.
386 ///
387 /// If an equivalent item already exists in the set, it returns
388 /// the index of the existing item and `false`, leaving the
389 /// original value in the set and without altering its insertion
390 /// order. Otherwise, it inserts the new item and returns the index
391 /// of the inserted item and `true`.
392 ///
393 /// Computes in **O(1)** time (amortized average).
394 pub fn insert_full(&mut self, value: T) -> (usize, bool) {
395 let (index, existing) = self.map.insert_full(value, ());
396 (index, existing.is_none())
397 }
398
399 /// Insert the value into the set at its ordered position among sorted values.
400 ///
401 /// This is equivalent to finding the position with
402 /// [`binary_search`][Self::binary_search], and if needed calling
403 /// [`insert_before`][Self::insert_before] for a new value.
404 ///
405 /// If the sorted item is found in the set, it returns the index of that
406 /// existing item and `false`, without any change. Otherwise, it inserts the
407 /// new item and returns its sorted index and `true`.
408 ///
409 /// If the existing items are **not** already sorted, then the insertion
410 /// index is unspecified (like [`slice::binary_search`]), but the value
411 /// is moved to or inserted at that position regardless.
412 ///
413 /// Computes in **O(n)** time (average). Instead of repeating calls to
414 /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
415 /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or
416 /// [`sort_unstable`][Self::sort_unstable] once.
417 pub fn insert_sorted(&mut self, value: T) -> (usize, bool)
418 where
419 T: Ord,
420 {
421 let (index, existing) = self.map.insert_sorted(value, ());
422 (index, existing.is_none())
423 }
424
425 /// Insert the value into the set before the value at the given index, or at the end.
426 ///
427 /// If an equivalent item already exists in the set, it returns `false` leaving the
428 /// original value in the set, but moved to the new position. The returned index
429 /// will either be the given index or one less, depending on how the value moved.
430 /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
431 ///
432 /// Otherwise, it inserts the new value exactly at the given index and returns `true`.
433 ///
434 /// ***Panics*** if `index` is out of bounds.
435 /// Valid indices are `0..=set.len()` (inclusive).
436 ///
437 /// Computes in **O(n)** time (average).
438 ///
439 /// # Examples
440 ///
441 /// ```
442 /// use indexmap::IndexSet;
443 /// let mut set: IndexSet<char> = ('a'..='z').collect();
444 ///
445 /// // The new value '*' goes exactly at the given index.
446 /// assert_eq!(set.get_index_of(&'*'), None);
447 /// assert_eq!(set.insert_before(10, '*'), (10, true));
448 /// assert_eq!(set.get_index_of(&'*'), Some(10));
449 ///
450 /// // Moving the value 'a' up will shift others down, so this moves *before* 10 to index 9.
451 /// assert_eq!(set.insert_before(10, 'a'), (9, false));
452 /// assert_eq!(set.get_index_of(&'a'), Some(9));
453 /// assert_eq!(set.get_index_of(&'*'), Some(10));
454 ///
455 /// // Moving the value 'z' down will shift others up, so this moves to exactly 10.
456 /// assert_eq!(set.insert_before(10, 'z'), (10, false));
457 /// assert_eq!(set.get_index_of(&'z'), Some(10));
458 /// assert_eq!(set.get_index_of(&'*'), Some(11));
459 ///
460 /// // Moving or inserting before the endpoint is also valid.
461 /// assert_eq!(set.len(), 27);
462 /// assert_eq!(set.insert_before(set.len(), '*'), (26, false));
463 /// assert_eq!(set.get_index_of(&'*'), Some(26));
464 /// assert_eq!(set.insert_before(set.len(), '+'), (27, true));
465 /// assert_eq!(set.get_index_of(&'+'), Some(27));
466 /// assert_eq!(set.len(), 28);
467 /// ```
468 #[track_caller]
469 pub fn insert_before(&mut self, index: usize, value: T) -> (usize, bool) {
470 let (index, existing) = self.map.insert_before(index, value, ());
471 (index, existing.is_none())
472 }
473
474 /// Insert the value into the set at the given index.
475 ///
476 /// If an equivalent item already exists in the set, it returns `false` leaving
477 /// the original value in the set, but moved to the given index.
478 /// Note that existing values **cannot** be moved to `index == set.len()`!
479 /// (See [`insert_before`](Self::insert_before) for different behavior here.)
480 ///
481 /// Otherwise, it inserts the new value at the given index and returns `true`.
482 ///
483 /// ***Panics*** if `index` is out of bounds.
484 /// Valid indices are `0..set.len()` (exclusive) when moving an existing value, or
485 /// `0..=set.len()` (inclusive) when inserting a new value.
486 ///
487 /// Computes in **O(n)** time (average).
488 ///
489 /// # Examples
490 ///
491 /// ```
492 /// use indexmap::IndexSet;
493 /// let mut set: IndexSet<char> = ('a'..='z').collect();
494 ///
495 /// // The new value '*' goes exactly at the given index.
496 /// assert_eq!(set.get_index_of(&'*'), None);
497 /// assert_eq!(set.shift_insert(10, '*'), true);
498 /// assert_eq!(set.get_index_of(&'*'), Some(10));
499 ///
500 /// // Moving the value 'a' up to 10 will shift others down, including the '*' that was at 10.
501 /// assert_eq!(set.shift_insert(10, 'a'), false);
502 /// assert_eq!(set.get_index_of(&'a'), Some(10));
503 /// assert_eq!(set.get_index_of(&'*'), Some(9));
504 ///
505 /// // Moving the value 'z' down to 9 will shift others up, including the '*' that was at 9.
506 /// assert_eq!(set.shift_insert(9, 'z'), false);
507 /// assert_eq!(set.get_index_of(&'z'), Some(9));
508 /// assert_eq!(set.get_index_of(&'*'), Some(10));
509 ///
510 /// // Existing values can move to len-1 at most, but new values can insert at the endpoint.
511 /// assert_eq!(set.len(), 27);
512 /// assert_eq!(set.shift_insert(set.len() - 1, '*'), false);
513 /// assert_eq!(set.get_index_of(&'*'), Some(26));
514 /// assert_eq!(set.shift_insert(set.len(), '+'), true);
515 /// assert_eq!(set.get_index_of(&'+'), Some(27));
516 /// assert_eq!(set.len(), 28);
517 /// ```
518 ///
519 /// ```should_panic
520 /// use indexmap::IndexSet;
521 /// let mut set: IndexSet<char> = ('a'..='z').collect();
522 ///
523 /// // This is an invalid index for moving an existing value!
524 /// set.shift_insert(set.len(), 'a');
525 /// ```
526 #[track_caller]
527 pub fn shift_insert(&mut self, index: usize, value: T) -> bool {
528 self.map.shift_insert(index, value, ()).is_none()
529 }
530
531 /// Adds a value to the set, replacing the existing value, if any, that is
532 /// equal to the given one, without altering its insertion order. Returns
533 /// the replaced value.
534 ///
535 /// Computes in **O(1)** time (average).
536 pub fn replace(&mut self, value: T) -> Option<T> {
537 self.replace_full(value).1
538 }
539
540 /// Adds a value to the set, replacing the existing value, if any, that is
541 /// equal to the given one, without altering its insertion order. Returns
542 /// the index of the item and its replaced value.
543 ///
544 /// Computes in **O(1)** time (average).
545 pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
546 let hash = self.map.hash(&value);
547 match self.map.core.replace_full(hash, value, ()) {
548 (i, Some((replaced, ()))) => (i, Some(replaced)),
549 (i, None) => (i, None),
550 }
551 }
552
553 /// Return an iterator over the values that are in `self` but not `other`.
554 ///
555 /// Values are produced in the same order that they appear in `self`.
556 pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
557 where
558 S2: BuildHasher,
559 {
560 Difference::new(self, other)
561 }
562
563 /// Return an iterator over the values that are in `self` or `other`,
564 /// but not in both.
565 ///
566 /// Values from `self` are produced in their original order, followed by
567 /// values from `other` in their original order.
568 pub fn symmetric_difference<'a, S2>(
569 &'a self,
570 other: &'a IndexSet<T, S2>,
571 ) -> SymmetricDifference<'a, T, S, S2>
572 where
573 S2: BuildHasher,
574 {
575 SymmetricDifference::new(self, other)
576 }
577
578 /// Return an iterator over the values that are in both `self` and `other`.
579 ///
580 /// Values are produced in the same order that they appear in `self`.
581 pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
582 where
583 S2: BuildHasher,
584 {
585 Intersection::new(self, other)
586 }
587
588 /// Return an iterator over all values that are in `self` or `other`.
589 ///
590 /// Values from `self` are produced in their original order, followed by
591 /// values that are unique to `other` in their original order.
592 pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
593 where
594 S2: BuildHasher,
595 {
596 Union::new(self, other)
597 }
598
599 /// Creates a splicing iterator that replaces the specified range in the set
600 /// with the given `replace_with` iterator and yields the removed items.
601 /// `replace_with` does not need to be the same length as `range`.
602 ///
603 /// The `range` is removed even if the iterator is not consumed until the
604 /// end. It is unspecified how many elements are removed from the set if the
605 /// `Splice` value is leaked.
606 ///
607 /// The input iterator `replace_with` is only consumed when the `Splice`
608 /// value is dropped. If a value from the iterator matches an existing entry
609 /// in the set (outside of `range`), then the original will be unchanged.
610 /// Otherwise, the new value will be inserted in the replaced `range`.
611 ///
612 /// ***Panics*** if the starting point is greater than the end point or if
613 /// the end point is greater than the length of the set.
614 ///
615 /// # Examples
616 ///
617 /// ```
618 /// use indexmap::IndexSet;
619 ///
620 /// let mut set = IndexSet::from([0, 1, 2, 3, 4]);
621 /// let new = [5, 4, 3, 2, 1];
622 /// let removed: Vec<_> = set.splice(2..4, new).collect();
623 ///
624 /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted.
625 /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4]));
626 /// assert_eq!(removed, &[2, 3]);
627 /// ```
628 #[track_caller]
629 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S>
630 where
631 R: RangeBounds<usize>,
632 I: IntoIterator<Item = T>,
633 {
634 Splice::new(self, range, replace_with.into_iter())
635 }
636
637 /// Moves all values from `other` into `self`, leaving `other` empty.
638 ///
639 /// This is equivalent to calling [`insert`][Self::insert] for each value
640 /// from `other` in order, which means that values that already exist
641 /// in `self` are unchanged in their current position.
642 ///
643 /// See also [`union`][Self::union] to iterate the combined values by
644 /// reference, without modifying `self` or `other`.
645 ///
646 /// # Examples
647 ///
648 /// ```
649 /// use indexmap::IndexSet;
650 ///
651 /// let mut a = IndexSet::from([3, 2, 1]);
652 /// let mut b = IndexSet::from([3, 4, 5]);
653 /// let old_capacity = b.capacity();
654 ///
655 /// a.append(&mut b);
656 ///
657 /// assert_eq!(a.len(), 5);
658 /// assert_eq!(b.len(), 0);
659 /// assert_eq!(b.capacity(), old_capacity);
660 ///
661 /// assert!(a.iter().eq(&[3, 2, 1, 4, 5]));
662 /// ```
663 pub fn append<S2>(&mut self, other: &mut IndexSet<T, S2>) {
664 self.map.append(&mut other.map);
665 }
666}
667
668impl<T, S> IndexSet<T, S>
669where
670 S: BuildHasher,
671{
672 /// Return `true` if an equivalent to `value` exists in the set.
673 ///
674 /// Computes in **O(1)** time (average).
675 pub fn contains<Q>(&self, value: &Q) -> bool
676 where
677 Q: ?Sized + Hash + Equivalent<T>,
678 {
679 self.map.contains_key(value)
680 }
681
682 /// Return a reference to the value stored in the set, if it is present,
683 /// else `None`.
684 ///
685 /// Computes in **O(1)** time (average).
686 pub fn get<Q>(&self, value: &Q) -> Option<&T>
687 where
688 Q: ?Sized + Hash + Equivalent<T>,
689 {
690 self.map.get_key_value(value).map(|(x, &())| x)
691 }
692
693 /// Return item index and value
694 pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)>
695 where
696 Q: ?Sized + Hash + Equivalent<T>,
697 {
698 self.map.get_full(value).map(|(i, x, &())| (i, x))
699 }
700
701 /// Return item index, if it exists in the set
702 ///
703 /// Computes in **O(1)** time (average).
704 pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize>
705 where
706 Q: ?Sized + Hash + Equivalent<T>,
707 {
708 self.map.get_index_of(value)
709 }
710
711 /// Remove the value from the set, and return `true` if it was present.
712 ///
713 /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this
714 /// value's position with the last element, and it is deprecated in favor of calling that
715 /// explicitly. If you need to preserve the relative order of the values in the set, use
716 /// [`.shift_remove(value)`][Self::shift_remove] instead.
717 #[deprecated(note = "`remove` disrupts the set order -- \
718 use `swap_remove` or `shift_remove` for explicit behavior.")]
719 pub fn remove<Q>(&mut self, value: &Q) -> bool
720 where
721 Q: ?Sized + Hash + Equivalent<T>,
722 {
723 self.swap_remove(value)
724 }
725
726 /// Remove the value from the set, and return `true` if it was present.
727 ///
728 /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
729 /// last element of the set and popping it off. **This perturbs
730 /// the position of what used to be the last element!**
731 ///
732 /// Return `false` if `value` was not in the set.
733 ///
734 /// Computes in **O(1)** time (average).
735 pub fn swap_remove<Q>(&mut self, value: &Q) -> bool
736 where
737 Q: ?Sized + Hash + Equivalent<T>,
738 {
739 self.map.swap_remove(value).is_some()
740 }
741
742 /// Remove the value from the set, and return `true` if it was present.
743 ///
744 /// Like [`Vec::remove`], the value is removed by shifting all of the
745 /// elements that follow it, preserving their relative order.
746 /// **This perturbs the index of all of those elements!**
747 ///
748 /// Return `false` if `value` was not in the set.
749 ///
750 /// Computes in **O(n)** time (average).
751 pub fn shift_remove<Q>(&mut self, value: &Q) -> bool
752 where
753 Q: ?Sized + Hash + Equivalent<T>,
754 {
755 self.map.shift_remove(value).is_some()
756 }
757
758 /// Removes and returns the value in the set, if any, that is equal to the
759 /// given one.
760 ///
761 /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this
762 /// value's position with the last element, and it is deprecated in favor of calling that
763 /// explicitly. If you need to preserve the relative order of the values in the set, use
764 /// [`.shift_take(value)`][Self::shift_take] instead.
765 #[deprecated(note = "`take` disrupts the set order -- \
766 use `swap_take` or `shift_take` for explicit behavior.")]
767 pub fn take<Q>(&mut self, value: &Q) -> Option<T>
768 where
769 Q: ?Sized + Hash + Equivalent<T>,
770 {
771 self.swap_take(value)
772 }
773
774 /// Removes and returns the value in the set, if any, that is equal to the
775 /// given one.
776 ///
777 /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
778 /// last element of the set and popping it off. **This perturbs
779 /// the position of what used to be the last element!**
780 ///
781 /// Return `None` if `value` was not in the set.
782 ///
783 /// Computes in **O(1)** time (average).
784 pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T>
785 where
786 Q: ?Sized + Hash + Equivalent<T>,
787 {
788 self.map.swap_remove_entry(value).map(|(x, ())| x)
789 }
790
791 /// Removes and returns the value in the set, if any, that is equal to the
792 /// given one.
793 ///
794 /// Like [`Vec::remove`], the value is removed by shifting all of the
795 /// elements that follow it, preserving their relative order.
796 /// **This perturbs the index of all of those elements!**
797 ///
798 /// Return `None` if `value` was not in the set.
799 ///
800 /// Computes in **O(n)** time (average).
801 pub fn shift_take<Q>(&mut self, value: &Q) -> Option<T>
802 where
803 Q: ?Sized + Hash + Equivalent<T>,
804 {
805 self.map.shift_remove_entry(value).map(|(x, ())| x)
806 }
807
808 /// Remove the value from the set return it and the index it had.
809 ///
810 /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
811 /// last element of the set and popping it off. **This perturbs
812 /// the position of what used to be the last element!**
813 ///
814 /// Return `None` if `value` was not in the set.
815 pub fn swap_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
816 where
817 Q: ?Sized + Hash + Equivalent<T>,
818 {
819 self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
820 }
821
822 /// Remove the value from the set return it and the index it had.
823 ///
824 /// Like [`Vec::remove`], the value is removed by shifting all of the
825 /// elements that follow it, preserving their relative order.
826 /// **This perturbs the index of all of those elements!**
827 ///
828 /// Return `None` if `value` was not in the set.
829 pub fn shift_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
830 where
831 Q: ?Sized + Hash + Equivalent<T>,
832 {
833 self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
834 }
835}
836
837impl<T, S> IndexSet<T, S> {
838 /// Remove the last value
839 ///
840 /// This preserves the order of the remaining elements.
841 ///
842 /// Computes in **O(1)** time (average).
843 #[doc(alias = "pop_last")] // like `BTreeSet`
844 pub fn pop(&mut self) -> Option<T> {
845 self.map.pop().map(|(x, ())| x)
846 }
847
848 /// Scan through each value in the set and keep those where the
849 /// closure `keep` returns `true`.
850 ///
851 /// The elements are visited in order, and remaining elements keep their
852 /// order.
853 ///
854 /// Computes in **O(n)** time (average).
855 pub fn retain<F>(&mut self, mut keep: F)
856 where
857 F: FnMut(&T) -> bool,
858 {
859 self.map.retain(move |x, &mut ()| keep(x))
860 }
861
862 /// Sort the set’s values by their default ordering.
863 ///
864 /// This is a stable sort -- but equivalent values should not normally coexist in
865 /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred
866 /// because it is generally faster and doesn't allocate auxiliary memory.
867 ///
868 /// See [`sort_by`](Self::sort_by) for details.
869 pub fn sort(&mut self)
870 where
871 T: Ord,
872 {
873 self.map.sort_keys()
874 }
875
876 /// Sort the set’s values in place using the comparison function `cmp`.
877 ///
878 /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
879 pub fn sort_by<F>(&mut self, mut cmp: F)
880 where
881 F: FnMut(&T, &T) -> Ordering,
882 {
883 self.map.sort_by(move |a, _, b, _| cmp(a, b));
884 }
885
886 /// Sort the values of the set and return a by-value iterator of
887 /// the values with the result.
888 ///
889 /// The sort is stable.
890 pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
891 where
892 F: FnMut(&T, &T) -> Ordering,
893 {
894 let mut entries = self.into_entries();
895 entries.sort_by(move |a, b| cmp(&a.key, &b.key));
896 IntoIter::new(entries)
897 }
898
899 /// Sort the set's values by their default ordering.
900 ///
901 /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
902 pub fn sort_unstable(&mut self)
903 where
904 T: Ord,
905 {
906 self.map.sort_unstable_keys()
907 }
908
909 /// Sort the set's values in place using the comparison function `cmp`.
910 ///
911 /// Computes in **O(n log n)** time. The sort is unstable.
912 pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
913 where
914 F: FnMut(&T, &T) -> Ordering,
915 {
916 self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
917 }
918
919 /// Sort the values of the set and return a by-value iterator of
920 /// the values with the result.
921 pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
922 where
923 F: FnMut(&T, &T) -> Ordering,
924 {
925 let mut entries = self.into_entries();
926 entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
927 IntoIter::new(entries)
928 }
929
930 /// Sort the set’s values in place using a key extraction function.
931 ///
932 /// During sorting, the function is called at most once per entry, by using temporary storage
933 /// to remember the results of its evaluation. The order of calls to the function is
934 /// unspecified and may change between versions of `indexmap` or the standard library.
935 ///
936 /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
937 /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
938 pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F)
939 where
940 K: Ord,
941 F: FnMut(&T) -> K,
942 {
943 self.with_entries(move |entries| {
944 entries.sort_by_cached_key(move |a| sort_key(&a.key));
945 });
946 }
947
948 /// Search over a sorted set for a value.
949 ///
950 /// Returns the position where that value is present, or the position where it can be inserted
951 /// to maintain the sort. See [`slice::binary_search`] for more details.
952 ///
953 /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up
954 /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values.
955 pub fn binary_search(&self, x: &T) -> Result<usize, usize>
956 where
957 T: Ord,
958 {
959 self.as_slice().binary_search(x)
960 }
961
962 /// Search over a sorted set with a comparator function.
963 ///
964 /// Returns the position where that value is present, or the position where it can be inserted
965 /// to maintain the sort. See [`slice::binary_search_by`] for more details.
966 ///
967 /// Computes in **O(log(n))** time.
968 #[inline]
969 pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
970 where
971 F: FnMut(&'a T) -> Ordering,
972 {
973 self.as_slice().binary_search_by(f)
974 }
975
976 /// Search over a sorted set with an extraction function.
977 ///
978 /// Returns the position where that value is present, or the position where it can be inserted
979 /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
980 ///
981 /// Computes in **O(log(n))** time.
982 #[inline]
983 pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
984 where
985 F: FnMut(&'a T) -> B,
986 B: Ord,
987 {
988 self.as_slice().binary_search_by_key(b, f)
989 }
990
991 /// Returns the index of the partition point of a sorted set according to the given predicate
992 /// (the index of the first element of the second partition).
993 ///
994 /// See [`slice::partition_point`] for more details.
995 ///
996 /// Computes in **O(log(n))** time.
997 #[must_use]
998 pub fn partition_point<P>(&self, pred: P) -> usize
999 where
1000 P: FnMut(&T) -> bool,
1001 {
1002 self.as_slice().partition_point(pred)
1003 }
1004
1005 /// Reverses the order of the set’s values in place.
1006 ///
1007 /// Computes in **O(n)** time and **O(1)** space.
1008 pub fn reverse(&mut self) {
1009 self.map.reverse()
1010 }
1011
1012 /// Returns a slice of all the values in the set.
1013 ///
1014 /// Computes in **O(1)** time.
1015 pub fn as_slice(&self) -> &Slice<T> {
1016 Slice::from_slice(self.as_entries())
1017 }
1018
1019 /// Converts into a boxed slice of all the values in the set.
1020 ///
1021 /// Note that this will drop the inner hash table and any excess capacity.
1022 pub fn into_boxed_slice(self) -> Box<Slice<T>> {
1023 Slice::from_boxed(self.into_entries().into_boxed_slice())
1024 }
1025
1026 /// Get a value by index
1027 ///
1028 /// Valid indices are `0 <= index < self.len()`.
1029 ///
1030 /// Computes in **O(1)** time.
1031 pub fn get_index(&self, index: usize) -> Option<&T> {
1032 self.as_entries().get(index).map(Bucket::key_ref)
1033 }
1034
1035 /// Returns a slice of values in the given range of indices.
1036 ///
1037 /// Valid indices are `0 <= index < self.len()`.
1038 ///
1039 /// Computes in **O(1)** time.
1040 pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> {
1041 let entries = self.as_entries();
1042 let range = try_simplify_range(range, entries.len())?;
1043 entries.get(range).map(Slice::from_slice)
1044 }
1045
1046 /// Get the first value
1047 ///
1048 /// Computes in **O(1)** time.
1049 pub fn first(&self) -> Option<&T> {
1050 self.as_entries().first().map(Bucket::key_ref)
1051 }
1052
1053 /// Get the last value
1054 ///
1055 /// Computes in **O(1)** time.
1056 pub fn last(&self) -> Option<&T> {
1057 self.as_entries().last().map(Bucket::key_ref)
1058 }
1059
1060 /// Remove the value by index
1061 ///
1062 /// Valid indices are `0 <= index < self.len()`.
1063 ///
1064 /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
1065 /// last element of the set and popping it off. **This perturbs
1066 /// the position of what used to be the last element!**
1067 ///
1068 /// Computes in **O(1)** time (average).
1069 pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
1070 self.map.swap_remove_index(index).map(|(x, ())| x)
1071 }
1072
1073 /// Remove the value by index
1074 ///
1075 /// Valid indices are `0 <= index < self.len()`.
1076 ///
1077 /// Like [`Vec::remove`], the value is removed by shifting all of the
1078 /// elements that follow it, preserving their relative order.
1079 /// **This perturbs the index of all of those elements!**
1080 ///
1081 /// Computes in **O(n)** time (average).
1082 pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
1083 self.map.shift_remove_index(index).map(|(x, ())| x)
1084 }
1085
1086 /// Moves the position of a value from one index to another
1087 /// by shifting all other values in-between.
1088 ///
1089 /// * If `from < to`, the other values will shift down while the targeted value moves up.
1090 /// * If `from > to`, the other values will shift up while the targeted value moves down.
1091 ///
1092 /// ***Panics*** if `from` or `to` are out of bounds.
1093 ///
1094 /// Computes in **O(n)** time (average).
1095 #[track_caller]
1096 pub fn move_index(&mut self, from: usize, to: usize) {
1097 self.map.move_index(from, to)
1098 }
1099
1100 /// Swaps the position of two values in the set.
1101 ///
1102 /// ***Panics*** if `a` or `b` are out of bounds.
1103 ///
1104 /// Computes in **O(1)** time (average).
1105 #[track_caller]
1106 pub fn swap_indices(&mut self, a: usize, b: usize) {
1107 self.map.swap_indices(a, b)
1108 }
1109}
1110
1111/// Access [`IndexSet`] values at indexed positions.
1112///
1113/// # Examples
1114///
1115/// ```
1116/// use indexmap::IndexSet;
1117///
1118/// let mut set = IndexSet::new();
1119/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1120/// set.insert(word.to_string());
1121/// }
1122/// assert_eq!(set[0], "Lorem");
1123/// assert_eq!(set[1], "ipsum");
1124/// set.reverse();
1125/// assert_eq!(set[0], "amet");
1126/// assert_eq!(set[1], "sit");
1127/// set.sort();
1128/// assert_eq!(set[0], "Lorem");
1129/// assert_eq!(set[1], "amet");
1130/// ```
1131///
1132/// ```should_panic
1133/// use indexmap::IndexSet;
1134///
1135/// let mut set = IndexSet::new();
1136/// set.insert("foo");
1137/// println!("{:?}", set[10]); // panics!
1138/// ```
1139impl<T, S> Index<usize> for IndexSet<T, S> {
1140 type Output = T;
1141
1142 /// Returns a reference to the value at the supplied `index`.
1143 ///
1144 /// ***Panics*** if `index` is out of bounds.
1145 fn index(&self, index: usize) -> &T {
1146 if let Some(value) = self.get_index(index) {
1147 value
1148 } else {
1149 panic!(
1150 "index out of bounds: the len is {len} but the index is {index}",
1151 len = self.len()
1152 );
1153 }
1154 }
1155}
1156
1157impl<T, S> FromIterator<T> for IndexSet<T, S>
1158where
1159 T: Hash + Eq,
1160 S: BuildHasher + Default,
1161{
1162 fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
1163 let iter = iterable.into_iter().map(|x| (x, ()));
1164 IndexSet {
1165 map: IndexMap::from_iter(iter),
1166 }
1167 }
1168}
1169
1170#[cfg(feature = "std")]
1171#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1172impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
1173where
1174 T: Eq + Hash,
1175{
1176 /// # Examples
1177 ///
1178 /// ```
1179 /// use indexmap::IndexSet;
1180 ///
1181 /// let set1 = IndexSet::from([1, 2, 3, 4]);
1182 /// let set2: IndexSet<_> = [1, 2, 3, 4].into();
1183 /// assert_eq!(set1, set2);
1184 /// ```
1185 fn from(arr: [T; N]) -> Self {
1186 Self::from_iter(arr)
1187 }
1188}
1189
1190impl<T, S> Extend<T> for IndexSet<T, S>
1191where
1192 T: Hash + Eq,
1193 S: BuildHasher,
1194{
1195 fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
1196 let iter = iterable.into_iter().map(|x| (x, ()));
1197 self.map.extend(iter);
1198 }
1199}
1200
1201impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
1202where
1203 T: Hash + Eq + Copy + 'a,
1204 S: BuildHasher,
1205{
1206 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
1207 let iter = iterable.into_iter().copied();
1208 self.extend(iter);
1209 }
1210}
1211
1212impl<T, S> Default for IndexSet<T, S>
1213where
1214 S: Default,
1215{
1216 /// Return an empty [`IndexSet`]
1217 fn default() -> Self {
1218 IndexSet {
1219 map: IndexMap::default(),
1220 }
1221 }
1222}
1223
1224impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
1225where
1226 T: Hash + Eq,
1227 S1: BuildHasher,
1228 S2: BuildHasher,
1229{
1230 fn eq(&self, other: &IndexSet<T, S2>) -> bool {
1231 self.len() == other.len() && self.is_subset(other)
1232 }
1233}
1234
1235impl<T, S> Eq for IndexSet<T, S>
1236where
1237 T: Eq + Hash,
1238 S: BuildHasher,
1239{
1240}
1241
1242impl<T, S> IndexSet<T, S>
1243where
1244 T: Eq + Hash,
1245 S: BuildHasher,
1246{
1247 /// Returns `true` if `self` has no elements in common with `other`.
1248 pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
1249 where
1250 S2: BuildHasher,
1251 {
1252 if self.len() <= other.len() {
1253 self.iter().all(move |value| !other.contains(value))
1254 } else {
1255 other.iter().all(move |value| !self.contains(value))
1256 }
1257 }
1258
1259 /// Returns `true` if all elements of `self` are contained in `other`.
1260 pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1261 where
1262 S2: BuildHasher,
1263 {
1264 self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
1265 }
1266
1267 /// Returns `true` if all elements of `other` are contained in `self`.
1268 pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1269 where
1270 S2: BuildHasher,
1271 {
1272 other.is_subset(self)
1273 }
1274}
1275
1276impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
1277where
1278 T: Eq + Hash + Clone,
1279 S1: BuildHasher + Default,
1280 S2: BuildHasher,
1281{
1282 type Output = IndexSet<T, S1>;
1283
1284 /// Returns the set intersection, cloned into a new set.
1285 ///
1286 /// Values are collected in the same order that they appear in `self`.
1287 fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
1288 self.intersection(other).cloned().collect()
1289 }
1290}
1291
1292impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
1293where
1294 T: Eq + Hash + Clone,
1295 S1: BuildHasher + Default,
1296 S2: BuildHasher,
1297{
1298 type Output = IndexSet<T, S1>;
1299
1300 /// Returns the set union, cloned into a new set.
1301 ///
1302 /// Values from `self` are collected in their original order, followed by
1303 /// values that are unique to `other` in their original order.
1304 fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
1305 self.union(other).cloned().collect()
1306 }
1307}
1308
1309impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
1310where
1311 T: Eq + Hash + Clone,
1312 S1: BuildHasher + Default,
1313 S2: BuildHasher,
1314{
1315 type Output = IndexSet<T, S1>;
1316
1317 /// Returns the set symmetric-difference, cloned into a new set.
1318 ///
1319 /// Values from `self` are collected in their original order, followed by
1320 /// values from `other` in their original order.
1321 fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
1322 self.symmetric_difference(other).cloned().collect()
1323 }
1324}
1325
1326impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
1327where
1328 T: Eq + Hash + Clone,
1329 S1: BuildHasher + Default,
1330 S2: BuildHasher,
1331{
1332 type Output = IndexSet<T, S1>;
1333
1334 /// Returns the set difference, cloned into a new set.
1335 ///
1336 /// Values are collected in the same order that they appear in `self`.
1337 fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
1338 self.difference(other).cloned().collect()
1339 }
1340}