indexmap/
set.rs

1//! A hash set implemented using [`IndexMap`]
2
3mod iter;
4mod mutable;
5mod slice;
6
7#[cfg(test)]
8mod tests;
9
10pub use self::iter::{
11    Difference, Drain, ExtractIf, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union,
12};
13pub use self::mutable::MutableValues;
14pub use self::slice::Slice;
15
16#[cfg(feature = "rayon")]
17pub use crate::rayon::set as rayon;
18use crate::TryReserveError;
19
20#[cfg(feature = "std")]
21use std::collections::hash_map::RandomState;
22
23use crate::util::try_simplify_range;
24use alloc::boxed::Box;
25use alloc::vec::Vec;
26use core::cmp::Ordering;
27use core::fmt;
28use core::hash::{BuildHasher, Hash};
29use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};
30
31use super::{Equivalent, IndexMap};
32
33type Bucket<T> = super::Bucket<T, ()>;
34
35/// A hash set where the iteration order of the values is independent of their
36/// hash values.
37///
38/// The interface is closely compatible with the standard
39/// [`HashSet`][std::collections::HashSet],
40/// but also has additional features.
41///
42/// # Order
43///
44/// The values have a consistent order that is determined by the sequence of
45/// insertion and removal calls on the set. The order does not depend on the
46/// values or the hash function at all. Note that insertion order and value
47/// are not affected if a re-insertion is attempted once an element is
48/// already present.
49///
50/// All iterators traverse the set *in order*.  Set operation iterators like
51/// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise"
52/// operators.  See their documentation for specifics.
53///
54/// The insertion order is preserved, with **notable exceptions** like the
55/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
56/// Methods such as [`.sort_by()`][Self::sort_by] of
57/// course result in a new order, depending on the sorting order.
58///
59/// # Indices
60///
61/// The values are indexed in a compact range without holes in the range
62/// `0..self.len()`. For example, the method `.get_full` looks up the index for
63/// a value, and the method `.get_index` looks up the value by index.
64///
65/// # Complexity
66///
67/// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity
68/// of the two are the same for most methods.
69///
70/// # Examples
71///
72/// ```
73/// use indexmap::IndexSet;
74///
75/// // Collects which letters appear in a sentence.
76/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
77///
78/// assert!(letters.contains(&'s'));
79/// assert!(letters.contains(&'t'));
80/// assert!(letters.contains(&'u'));
81/// assert!(!letters.contains(&'y'));
82/// ```
83#[cfg(feature = "std")]
84pub struct IndexSet<T, S = RandomState> {
85    pub(crate) map: IndexMap<T, (), S>,
86}
87#[cfg(not(feature = "std"))]
88pub struct IndexSet<T, S> {
89    pub(crate) map: IndexMap<T, (), S>,
90}
91
92impl<T, S> Clone for IndexSet<T, S>
93where
94    T: Clone,
95    S: Clone,
96{
97    fn clone(&self) -> Self {
98        IndexSet {
99            map: self.map.clone(),
100        }
101    }
102
103    fn clone_from(&mut self, other: &Self) {
104        self.map.clone_from(&other.map);
105    }
106}
107
108impl<T, S> fmt::Debug for IndexSet<T, S>
109where
110    T: fmt::Debug,
111{
112    #[cfg(not(feature = "test_debug"))]
113    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
114        f.debug_set().entries(self.iter()).finish()
115    }
116
117    #[cfg(feature = "test_debug")]
118    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
119        // Let the inner `IndexMap` print all of its details
120        f.debug_struct("IndexSet").field("map", &self.map).finish()
121    }
122}
123
124#[cfg(feature = "std")]
125#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
126impl<T> IndexSet<T> {
127    /// Create a new set. (Does not allocate.)
128    pub fn new() -> Self {
129        IndexSet {
130            map: IndexMap::new(),
131        }
132    }
133
134    /// Create a new set with capacity for `n` elements.
135    /// (Does not allocate if `n` is zero.)
136    ///
137    /// Computes in **O(n)** time.
138    pub fn with_capacity(n: usize) -> Self {
139        IndexSet {
140            map: IndexMap::with_capacity(n),
141        }
142    }
143}
144
145impl<T, S> IndexSet<T, S> {
146    /// Create a new set with capacity for `n` elements.
147    /// (Does not allocate if `n` is zero.)
148    ///
149    /// Computes in **O(n)** time.
150    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
151        IndexSet {
152            map: IndexMap::with_capacity_and_hasher(n, hash_builder),
153        }
154    }
155
156    /// Create a new set with `hash_builder`.
157    ///
158    /// This function is `const`, so it
159    /// can be called in `static` contexts.
160    pub const fn with_hasher(hash_builder: S) -> Self {
161        IndexSet {
162            map: IndexMap::with_hasher(hash_builder),
163        }
164    }
165
166    #[inline]
167    pub(crate) fn into_entries(self) -> Vec<Bucket<T>> {
168        self.map.into_entries()
169    }
170
171    #[inline]
172    pub(crate) fn as_entries(&self) -> &[Bucket<T>] {
173        self.map.as_entries()
174    }
175
176    pub(crate) fn with_entries<F>(&mut self, f: F)
177    where
178        F: FnOnce(&mut [Bucket<T>]),
179    {
180        self.map.with_entries(f);
181    }
182
183    /// Return the number of elements the set can hold without reallocating.
184    ///
185    /// This number is a lower bound; the set might be able to hold more,
186    /// but is guaranteed to be able to hold at least this many.
187    ///
188    /// Computes in **O(1)** time.
189    pub fn capacity(&self) -> usize {
190        self.map.capacity()
191    }
192
193    /// Return a reference to the set's `BuildHasher`.
194    pub fn hasher(&self) -> &S {
195        self.map.hasher()
196    }
197
198    /// Return the number of elements in the set.
199    ///
200    /// Computes in **O(1)** time.
201    pub fn len(&self) -> usize {
202        self.map.len()
203    }
204
205    /// Returns true if the set contains no elements.
206    ///
207    /// Computes in **O(1)** time.
208    pub fn is_empty(&self) -> bool {
209        self.map.is_empty()
210    }
211
212    /// Return an iterator over the values of the set, in their order
213    pub fn iter(&self) -> Iter<'_, T> {
214        Iter::new(self.as_entries())
215    }
216
217    /// Remove all elements in the set, while preserving its capacity.
218    ///
219    /// Computes in **O(n)** time.
220    pub fn clear(&mut self) {
221        self.map.clear();
222    }
223
224    /// Shortens the set, keeping the first `len` elements and dropping the rest.
225    ///
226    /// If `len` is greater than the set's current length, this has no effect.
227    pub fn truncate(&mut self, len: usize) {
228        self.map.truncate(len);
229    }
230
231    /// Clears the `IndexSet` in the given index range, returning those values
232    /// as a drain iterator.
233    ///
234    /// The range may be any type that implements [`RangeBounds<usize>`],
235    /// including all of the `std::ops::Range*` types, or even a tuple pair of
236    /// `Bound` start and end values. To drain the set entirely, use `RangeFull`
237    /// like `set.drain(..)`.
238    ///
239    /// This shifts down all entries following the drained range to fill the
240    /// gap, and keeps the allocated memory for reuse.
241    ///
242    /// ***Panics*** if the starting point is greater than the end point or if
243    /// the end point is greater than the length of the set.
244    #[track_caller]
245    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
246    where
247        R: RangeBounds<usize>,
248    {
249        Drain::new(self.map.core.drain(range))
250    }
251
252    /// Creates an iterator which uses a closure to determine if a value should be removed,
253    /// for all values in the given range.
254    ///
255    /// If the closure returns true, then the value is removed and yielded.
256    /// If the closure returns false, the value will remain in the list and will not be yielded
257    /// by the iterator.
258    ///
259    /// The range may be any type that implements [`RangeBounds<usize>`],
260    /// including all of the `std::ops::Range*` types, or even a tuple pair of
261    /// `Bound` start and end values. To check the entire set, use `RangeFull`
262    /// like `set.extract_if(.., predicate)`.
263    ///
264    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
265    /// or the iteration short-circuits, then the remaining elements will be retained.
266    /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
267    ///
268    /// [`retain`]: IndexSet::retain
269    ///
270    /// ***Panics*** if the starting point is greater than the end point or if
271    /// the end point is greater than the length of the set.
272    ///
273    /// # Examples
274    ///
275    /// Splitting a set into even and odd values, reusing the original set:
276    ///
277    /// ```
278    /// use indexmap::IndexSet;
279    ///
280    /// let mut set: IndexSet<i32> = (0..8).collect();
281    /// let extracted: IndexSet<i32> = set.extract_if(.., |v| v % 2 == 0).collect();
282    ///
283    /// let evens = extracted.into_iter().collect::<Vec<_>>();
284    /// let odds = set.into_iter().collect::<Vec<_>>();
285    ///
286    /// assert_eq!(evens, vec![0, 2, 4, 6]);
287    /// assert_eq!(odds, vec![1, 3, 5, 7]);
288    /// ```
289    #[track_caller]
290    pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, T, F>
291    where
292        F: FnMut(&T) -> bool,
293        R: RangeBounds<usize>,
294    {
295        ExtractIf::new(&mut self.map.core, range, pred)
296    }
297
298    /// Splits the collection into two at the given index.
299    ///
300    /// Returns a newly allocated set containing the elements in the range
301    /// `[at, len)`. After the call, the original set will be left containing
302    /// the elements `[0, at)` with its previous capacity unchanged.
303    ///
304    /// ***Panics*** if `at > len`.
305    #[track_caller]
306    pub fn split_off(&mut self, at: usize) -> Self
307    where
308        S: Clone,
309    {
310        Self {
311            map: self.map.split_off(at),
312        }
313    }
314
315    /// Reserve capacity for `additional` more values.
316    ///
317    /// Computes in **O(n)** time.
318    pub fn reserve(&mut self, additional: usize) {
319        self.map.reserve(additional);
320    }
321
322    /// Reserve capacity for `additional` more values, without over-allocating.
323    ///
324    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
325    /// frequent re-allocations. However, the underlying data structures may still have internal
326    /// capacity requirements, and the allocator itself may give more space than requested, so this
327    /// cannot be relied upon to be precisely minimal.
328    ///
329    /// Computes in **O(n)** time.
330    pub fn reserve_exact(&mut self, additional: usize) {
331        self.map.reserve_exact(additional);
332    }
333
334    /// Try to reserve capacity for `additional` more values.
335    ///
336    /// Computes in **O(n)** time.
337    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
338        self.map.try_reserve(additional)
339    }
340
341    /// Try to reserve capacity for `additional` more values, without over-allocating.
342    ///
343    /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
344    /// frequent re-allocations. However, the underlying data structures may still have internal
345    /// capacity requirements, and the allocator itself may give more space than requested, so this
346    /// cannot be relied upon to be precisely minimal.
347    ///
348    /// Computes in **O(n)** time.
349    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
350        self.map.try_reserve_exact(additional)
351    }
352
353    /// Shrink the capacity of the set as much as possible.
354    ///
355    /// Computes in **O(n)** time.
356    pub fn shrink_to_fit(&mut self) {
357        self.map.shrink_to_fit();
358    }
359
360    /// Shrink the capacity of the set with a lower limit.
361    ///
362    /// Computes in **O(n)** time.
363    pub fn shrink_to(&mut self, min_capacity: usize) {
364        self.map.shrink_to(min_capacity);
365    }
366}
367
368impl<T, S> IndexSet<T, S>
369where
370    T: Hash + Eq,
371    S: BuildHasher,
372{
373    /// Insert the value into the set.
374    ///
375    /// If an equivalent item already exists in the set, it returns
376    /// `false` leaving the original value in the set and without
377    /// altering its insertion order. Otherwise, it inserts the new
378    /// item and returns `true`.
379    ///
380    /// Computes in **O(1)** time (amortized average).
381    pub fn insert(&mut self, value: T) -> bool {
382        self.map.insert(value, ()).is_none()
383    }
384
385    /// Insert the value into the set, and get its index.
386    ///
387    /// If an equivalent item already exists in the set, it returns
388    /// the index of the existing item and `false`, leaving the
389    /// original value in the set and without altering its insertion
390    /// order. Otherwise, it inserts the new item and returns the index
391    /// of the inserted item and `true`.
392    ///
393    /// Computes in **O(1)** time (amortized average).
394    pub fn insert_full(&mut self, value: T) -> (usize, bool) {
395        let (index, existing) = self.map.insert_full(value, ());
396        (index, existing.is_none())
397    }
398
399    /// Insert the value into the set at its ordered position among sorted values.
400    ///
401    /// This is equivalent to finding the position with
402    /// [`binary_search`][Self::binary_search], and if needed calling
403    /// [`insert_before`][Self::insert_before] for a new value.
404    ///
405    /// If the sorted item is found in the set, it returns the index of that
406    /// existing item and `false`, without any change. Otherwise, it inserts the
407    /// new item and returns its sorted index and `true`.
408    ///
409    /// If the existing items are **not** already sorted, then the insertion
410    /// index is unspecified (like [`slice::binary_search`]), but the value
411    /// is moved to or inserted at that position regardless.
412    ///
413    /// Computes in **O(n)** time (average). Instead of repeating calls to
414    /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
415    /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or
416    /// [`sort_unstable`][Self::sort_unstable] once.
417    pub fn insert_sorted(&mut self, value: T) -> (usize, bool)
418    where
419        T: Ord,
420    {
421        let (index, existing) = self.map.insert_sorted(value, ());
422        (index, existing.is_none())
423    }
424
425    /// Insert the value into the set before the value at the given index, or at the end.
426    ///
427    /// If an equivalent item already exists in the set, it returns `false` leaving the
428    /// original value in the set, but moved to the new position. The returned index
429    /// will either be the given index or one less, depending on how the value moved.
430    /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
431    ///
432    /// Otherwise, it inserts the new value exactly at the given index and returns `true`.
433    ///
434    /// ***Panics*** if `index` is out of bounds.
435    /// Valid indices are `0..=set.len()` (inclusive).
436    ///
437    /// Computes in **O(n)** time (average).
438    ///
439    /// # Examples
440    ///
441    /// ```
442    /// use indexmap::IndexSet;
443    /// let mut set: IndexSet<char> = ('a'..='z').collect();
444    ///
445    /// // The new value '*' goes exactly at the given index.
446    /// assert_eq!(set.get_index_of(&'*'), None);
447    /// assert_eq!(set.insert_before(10, '*'), (10, true));
448    /// assert_eq!(set.get_index_of(&'*'), Some(10));
449    ///
450    /// // Moving the value 'a' up will shift others down, so this moves *before* 10 to index 9.
451    /// assert_eq!(set.insert_before(10, 'a'), (9, false));
452    /// assert_eq!(set.get_index_of(&'a'), Some(9));
453    /// assert_eq!(set.get_index_of(&'*'), Some(10));
454    ///
455    /// // Moving the value 'z' down will shift others up, so this moves to exactly 10.
456    /// assert_eq!(set.insert_before(10, 'z'), (10, false));
457    /// assert_eq!(set.get_index_of(&'z'), Some(10));
458    /// assert_eq!(set.get_index_of(&'*'), Some(11));
459    ///
460    /// // Moving or inserting before the endpoint is also valid.
461    /// assert_eq!(set.len(), 27);
462    /// assert_eq!(set.insert_before(set.len(), '*'), (26, false));
463    /// assert_eq!(set.get_index_of(&'*'), Some(26));
464    /// assert_eq!(set.insert_before(set.len(), '+'), (27, true));
465    /// assert_eq!(set.get_index_of(&'+'), Some(27));
466    /// assert_eq!(set.len(), 28);
467    /// ```
468    #[track_caller]
469    pub fn insert_before(&mut self, index: usize, value: T) -> (usize, bool) {
470        let (index, existing) = self.map.insert_before(index, value, ());
471        (index, existing.is_none())
472    }
473
474    /// Insert the value into the set at the given index.
475    ///
476    /// If an equivalent item already exists in the set, it returns `false` leaving
477    /// the original value in the set, but moved to the given index.
478    /// Note that existing values **cannot** be moved to `index == set.len()`!
479    /// (See [`insert_before`](Self::insert_before) for different behavior here.)
480    ///
481    /// Otherwise, it inserts the new value at the given index and returns `true`.
482    ///
483    /// ***Panics*** if `index` is out of bounds.
484    /// Valid indices are `0..set.len()` (exclusive) when moving an existing value, or
485    /// `0..=set.len()` (inclusive) when inserting a new value.
486    ///
487    /// Computes in **O(n)** time (average).
488    ///
489    /// # Examples
490    ///
491    /// ```
492    /// use indexmap::IndexSet;
493    /// let mut set: IndexSet<char> = ('a'..='z').collect();
494    ///
495    /// // The new value '*' goes exactly at the given index.
496    /// assert_eq!(set.get_index_of(&'*'), None);
497    /// assert_eq!(set.shift_insert(10, '*'), true);
498    /// assert_eq!(set.get_index_of(&'*'), Some(10));
499    ///
500    /// // Moving the value 'a' up to 10 will shift others down, including the '*' that was at 10.
501    /// assert_eq!(set.shift_insert(10, 'a'), false);
502    /// assert_eq!(set.get_index_of(&'a'), Some(10));
503    /// assert_eq!(set.get_index_of(&'*'), Some(9));
504    ///
505    /// // Moving the value 'z' down to 9 will shift others up, including the '*' that was at 9.
506    /// assert_eq!(set.shift_insert(9, 'z'), false);
507    /// assert_eq!(set.get_index_of(&'z'), Some(9));
508    /// assert_eq!(set.get_index_of(&'*'), Some(10));
509    ///
510    /// // Existing values can move to len-1 at most, but new values can insert at the endpoint.
511    /// assert_eq!(set.len(), 27);
512    /// assert_eq!(set.shift_insert(set.len() - 1, '*'), false);
513    /// assert_eq!(set.get_index_of(&'*'), Some(26));
514    /// assert_eq!(set.shift_insert(set.len(), '+'), true);
515    /// assert_eq!(set.get_index_of(&'+'), Some(27));
516    /// assert_eq!(set.len(), 28);
517    /// ```
518    ///
519    /// ```should_panic
520    /// use indexmap::IndexSet;
521    /// let mut set: IndexSet<char> = ('a'..='z').collect();
522    ///
523    /// // This is an invalid index for moving an existing value!
524    /// set.shift_insert(set.len(), 'a');
525    /// ```
526    #[track_caller]
527    pub fn shift_insert(&mut self, index: usize, value: T) -> bool {
528        self.map.shift_insert(index, value, ()).is_none()
529    }
530
531    /// Adds a value to the set, replacing the existing value, if any, that is
532    /// equal to the given one, without altering its insertion order. Returns
533    /// the replaced value.
534    ///
535    /// Computes in **O(1)** time (average).
536    pub fn replace(&mut self, value: T) -> Option<T> {
537        self.replace_full(value).1
538    }
539
540    /// Adds a value to the set, replacing the existing value, if any, that is
541    /// equal to the given one, without altering its insertion order. Returns
542    /// the index of the item and its replaced value.
543    ///
544    /// Computes in **O(1)** time (average).
545    pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
546        let hash = self.map.hash(&value);
547        match self.map.core.replace_full(hash, value, ()) {
548            (i, Some((replaced, ()))) => (i, Some(replaced)),
549            (i, None) => (i, None),
550        }
551    }
552
553    /// Return an iterator over the values that are in `self` but not `other`.
554    ///
555    /// Values are produced in the same order that they appear in `self`.
556    pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
557    where
558        S2: BuildHasher,
559    {
560        Difference::new(self, other)
561    }
562
563    /// Return an iterator over the values that are in `self` or `other`,
564    /// but not in both.
565    ///
566    /// Values from `self` are produced in their original order, followed by
567    /// values from `other` in their original order.
568    pub fn symmetric_difference<'a, S2>(
569        &'a self,
570        other: &'a IndexSet<T, S2>,
571    ) -> SymmetricDifference<'a, T, S, S2>
572    where
573        S2: BuildHasher,
574    {
575        SymmetricDifference::new(self, other)
576    }
577
578    /// Return an iterator over the values that are in both `self` and `other`.
579    ///
580    /// Values are produced in the same order that they appear in `self`.
581    pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
582    where
583        S2: BuildHasher,
584    {
585        Intersection::new(self, other)
586    }
587
588    /// Return an iterator over all values that are in `self` or `other`.
589    ///
590    /// Values from `self` are produced in their original order, followed by
591    /// values that are unique to `other` in their original order.
592    pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
593    where
594        S2: BuildHasher,
595    {
596        Union::new(self, other)
597    }
598
599    /// Creates a splicing iterator that replaces the specified range in the set
600    /// with the given `replace_with` iterator and yields the removed items.
601    /// `replace_with` does not need to be the same length as `range`.
602    ///
603    /// The `range` is removed even if the iterator is not consumed until the
604    /// end. It is unspecified how many elements are removed from the set if the
605    /// `Splice` value is leaked.
606    ///
607    /// The input iterator `replace_with` is only consumed when the `Splice`
608    /// value is dropped. If a value from the iterator matches an existing entry
609    /// in the set (outside of `range`), then the original will be unchanged.
610    /// Otherwise, the new value will be inserted in the replaced `range`.
611    ///
612    /// ***Panics*** if the starting point is greater than the end point or if
613    /// the end point is greater than the length of the set.
614    ///
615    /// # Examples
616    ///
617    /// ```
618    /// use indexmap::IndexSet;
619    ///
620    /// let mut set = IndexSet::from([0, 1, 2, 3, 4]);
621    /// let new = [5, 4, 3, 2, 1];
622    /// let removed: Vec<_> = set.splice(2..4, new).collect();
623    ///
624    /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted.
625    /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4]));
626    /// assert_eq!(removed, &[2, 3]);
627    /// ```
628    #[track_caller]
629    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S>
630    where
631        R: RangeBounds<usize>,
632        I: IntoIterator<Item = T>,
633    {
634        Splice::new(self, range, replace_with.into_iter())
635    }
636
637    /// Moves all values from `other` into `self`, leaving `other` empty.
638    ///
639    /// This is equivalent to calling [`insert`][Self::insert] for each value
640    /// from `other` in order, which means that values that already exist
641    /// in `self` are unchanged in their current position.
642    ///
643    /// See also [`union`][Self::union] to iterate the combined values by
644    /// reference, without modifying `self` or `other`.
645    ///
646    /// # Examples
647    ///
648    /// ```
649    /// use indexmap::IndexSet;
650    ///
651    /// let mut a = IndexSet::from([3, 2, 1]);
652    /// let mut b = IndexSet::from([3, 4, 5]);
653    /// let old_capacity = b.capacity();
654    ///
655    /// a.append(&mut b);
656    ///
657    /// assert_eq!(a.len(), 5);
658    /// assert_eq!(b.len(), 0);
659    /// assert_eq!(b.capacity(), old_capacity);
660    ///
661    /// assert!(a.iter().eq(&[3, 2, 1, 4, 5]));
662    /// ```
663    pub fn append<S2>(&mut self, other: &mut IndexSet<T, S2>) {
664        self.map.append(&mut other.map);
665    }
666}
667
668impl<T, S> IndexSet<T, S>
669where
670    S: BuildHasher,
671{
672    /// Return `true` if an equivalent to `value` exists in the set.
673    ///
674    /// Computes in **O(1)** time (average).
675    pub fn contains<Q>(&self, value: &Q) -> bool
676    where
677        Q: ?Sized + Hash + Equivalent<T>,
678    {
679        self.map.contains_key(value)
680    }
681
682    /// Return a reference to the value stored in the set, if it is present,
683    /// else `None`.
684    ///
685    /// Computes in **O(1)** time (average).
686    pub fn get<Q>(&self, value: &Q) -> Option<&T>
687    where
688        Q: ?Sized + Hash + Equivalent<T>,
689    {
690        self.map.get_key_value(value).map(|(x, &())| x)
691    }
692
693    /// Return item index and value
694    pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)>
695    where
696        Q: ?Sized + Hash + Equivalent<T>,
697    {
698        self.map.get_full(value).map(|(i, x, &())| (i, x))
699    }
700
701    /// Return item index, if it exists in the set
702    ///
703    /// Computes in **O(1)** time (average).
704    pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize>
705    where
706        Q: ?Sized + Hash + Equivalent<T>,
707    {
708        self.map.get_index_of(value)
709    }
710
711    /// Remove the value from the set, and return `true` if it was present.
712    ///
713    /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this
714    /// value's position with the last element, and it is deprecated in favor of calling that
715    /// explicitly. If you need to preserve the relative order of the values in the set, use
716    /// [`.shift_remove(value)`][Self::shift_remove] instead.
717    #[deprecated(note = "`remove` disrupts the set order -- \
718        use `swap_remove` or `shift_remove` for explicit behavior.")]
719    pub fn remove<Q>(&mut self, value: &Q) -> bool
720    where
721        Q: ?Sized + Hash + Equivalent<T>,
722    {
723        self.swap_remove(value)
724    }
725
726    /// Remove the value from the set, and return `true` if it was present.
727    ///
728    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
729    /// last element of the set and popping it off. **This perturbs
730    /// the position of what used to be the last element!**
731    ///
732    /// Return `false` if `value` was not in the set.
733    ///
734    /// Computes in **O(1)** time (average).
735    pub fn swap_remove<Q>(&mut self, value: &Q) -> bool
736    where
737        Q: ?Sized + Hash + Equivalent<T>,
738    {
739        self.map.swap_remove(value).is_some()
740    }
741
742    /// Remove the value from the set, and return `true` if it was present.
743    ///
744    /// Like [`Vec::remove`], the value is removed by shifting all of the
745    /// elements that follow it, preserving their relative order.
746    /// **This perturbs the index of all of those elements!**
747    ///
748    /// Return `false` if `value` was not in the set.
749    ///
750    /// Computes in **O(n)** time (average).
751    pub fn shift_remove<Q>(&mut self, value: &Q) -> bool
752    where
753        Q: ?Sized + Hash + Equivalent<T>,
754    {
755        self.map.shift_remove(value).is_some()
756    }
757
758    /// Removes and returns the value in the set, if any, that is equal to the
759    /// given one.
760    ///
761    /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this
762    /// value's position with the last element, and it is deprecated in favor of calling that
763    /// explicitly. If you need to preserve the relative order of the values in the set, use
764    /// [`.shift_take(value)`][Self::shift_take] instead.
765    #[deprecated(note = "`take` disrupts the set order -- \
766        use `swap_take` or `shift_take` for explicit behavior.")]
767    pub fn take<Q>(&mut self, value: &Q) -> Option<T>
768    where
769        Q: ?Sized + Hash + Equivalent<T>,
770    {
771        self.swap_take(value)
772    }
773
774    /// Removes and returns the value in the set, if any, that is equal to the
775    /// given one.
776    ///
777    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
778    /// last element of the set and popping it off. **This perturbs
779    /// the position of what used to be the last element!**
780    ///
781    /// Return `None` if `value` was not in the set.
782    ///
783    /// Computes in **O(1)** time (average).
784    pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T>
785    where
786        Q: ?Sized + Hash + Equivalent<T>,
787    {
788        self.map.swap_remove_entry(value).map(|(x, ())| x)
789    }
790
791    /// Removes and returns the value in the set, if any, that is equal to the
792    /// given one.
793    ///
794    /// Like [`Vec::remove`], the value is removed by shifting all of the
795    /// elements that follow it, preserving their relative order.
796    /// **This perturbs the index of all of those elements!**
797    ///
798    /// Return `None` if `value` was not in the set.
799    ///
800    /// Computes in **O(n)** time (average).
801    pub fn shift_take<Q>(&mut self, value: &Q) -> Option<T>
802    where
803        Q: ?Sized + Hash + Equivalent<T>,
804    {
805        self.map.shift_remove_entry(value).map(|(x, ())| x)
806    }
807
808    /// Remove the value from the set return it and the index it had.
809    ///
810    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
811    /// last element of the set and popping it off. **This perturbs
812    /// the position of what used to be the last element!**
813    ///
814    /// Return `None` if `value` was not in the set.
815    pub fn swap_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
816    where
817        Q: ?Sized + Hash + Equivalent<T>,
818    {
819        self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
820    }
821
822    /// Remove the value from the set return it and the index it had.
823    ///
824    /// Like [`Vec::remove`], the value is removed by shifting all of the
825    /// elements that follow it, preserving their relative order.
826    /// **This perturbs the index of all of those elements!**
827    ///
828    /// Return `None` if `value` was not in the set.
829    pub fn shift_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
830    where
831        Q: ?Sized + Hash + Equivalent<T>,
832    {
833        self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
834    }
835}
836
837impl<T, S> IndexSet<T, S> {
838    /// Remove the last value
839    ///
840    /// This preserves the order of the remaining elements.
841    ///
842    /// Computes in **O(1)** time (average).
843    #[doc(alias = "pop_last")] // like `BTreeSet`
844    pub fn pop(&mut self) -> Option<T> {
845        self.map.pop().map(|(x, ())| x)
846    }
847
848    /// Scan through each value in the set and keep those where the
849    /// closure `keep` returns `true`.
850    ///
851    /// The elements are visited in order, and remaining elements keep their
852    /// order.
853    ///
854    /// Computes in **O(n)** time (average).
855    pub fn retain<F>(&mut self, mut keep: F)
856    where
857        F: FnMut(&T) -> bool,
858    {
859        self.map.retain(move |x, &mut ()| keep(x))
860    }
861
862    /// Sort the set’s values by their default ordering.
863    ///
864    /// This is a stable sort -- but equivalent values should not normally coexist in
865    /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred
866    /// because it is generally faster and doesn't allocate auxiliary memory.
867    ///
868    /// See [`sort_by`](Self::sort_by) for details.
869    pub fn sort(&mut self)
870    where
871        T: Ord,
872    {
873        self.map.sort_keys()
874    }
875
876    /// Sort the set’s values in place using the comparison function `cmp`.
877    ///
878    /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
879    pub fn sort_by<F>(&mut self, mut cmp: F)
880    where
881        F: FnMut(&T, &T) -> Ordering,
882    {
883        self.map.sort_by(move |a, _, b, _| cmp(a, b));
884    }
885
886    /// Sort the values of the set and return a by-value iterator of
887    /// the values with the result.
888    ///
889    /// The sort is stable.
890    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
891    where
892        F: FnMut(&T, &T) -> Ordering,
893    {
894        let mut entries = self.into_entries();
895        entries.sort_by(move |a, b| cmp(&a.key, &b.key));
896        IntoIter::new(entries)
897    }
898
899    /// Sort the set's values by their default ordering.
900    ///
901    /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
902    pub fn sort_unstable(&mut self)
903    where
904        T: Ord,
905    {
906        self.map.sort_unstable_keys()
907    }
908
909    /// Sort the set's values in place using the comparison function `cmp`.
910    ///
911    /// Computes in **O(n log n)** time. The sort is unstable.
912    pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
913    where
914        F: FnMut(&T, &T) -> Ordering,
915    {
916        self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
917    }
918
919    /// Sort the values of the set and return a by-value iterator of
920    /// the values with the result.
921    pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
922    where
923        F: FnMut(&T, &T) -> Ordering,
924    {
925        let mut entries = self.into_entries();
926        entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
927        IntoIter::new(entries)
928    }
929
930    /// Sort the set’s values in place using a key extraction function.
931    ///
932    /// During sorting, the function is called at most once per entry, by using temporary storage
933    /// to remember the results of its evaluation. The order of calls to the function is
934    /// unspecified and may change between versions of `indexmap` or the standard library.
935    ///
936    /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
937    /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
938    pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F)
939    where
940        K: Ord,
941        F: FnMut(&T) -> K,
942    {
943        self.with_entries(move |entries| {
944            entries.sort_by_cached_key(move |a| sort_key(&a.key));
945        });
946    }
947
948    /// Search over a sorted set for a value.
949    ///
950    /// Returns the position where that value is present, or the position where it can be inserted
951    /// to maintain the sort. See [`slice::binary_search`] for more details.
952    ///
953    /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up
954    /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values.
955    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
956    where
957        T: Ord,
958    {
959        self.as_slice().binary_search(x)
960    }
961
962    /// Search over a sorted set with a comparator function.
963    ///
964    /// Returns the position where that value is present, or the position where it can be inserted
965    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
966    ///
967    /// Computes in **O(log(n))** time.
968    #[inline]
969    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
970    where
971        F: FnMut(&'a T) -> Ordering,
972    {
973        self.as_slice().binary_search_by(f)
974    }
975
976    /// Search over a sorted set with an extraction function.
977    ///
978    /// Returns the position where that value is present, or the position where it can be inserted
979    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
980    ///
981    /// Computes in **O(log(n))** time.
982    #[inline]
983    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
984    where
985        F: FnMut(&'a T) -> B,
986        B: Ord,
987    {
988        self.as_slice().binary_search_by_key(b, f)
989    }
990
991    /// Returns the index of the partition point of a sorted set according to the given predicate
992    /// (the index of the first element of the second partition).
993    ///
994    /// See [`slice::partition_point`] for more details.
995    ///
996    /// Computes in **O(log(n))** time.
997    #[must_use]
998    pub fn partition_point<P>(&self, pred: P) -> usize
999    where
1000        P: FnMut(&T) -> bool,
1001    {
1002        self.as_slice().partition_point(pred)
1003    }
1004
1005    /// Reverses the order of the set’s values in place.
1006    ///
1007    /// Computes in **O(n)** time and **O(1)** space.
1008    pub fn reverse(&mut self) {
1009        self.map.reverse()
1010    }
1011
1012    /// Returns a slice of all the values in the set.
1013    ///
1014    /// Computes in **O(1)** time.
1015    pub fn as_slice(&self) -> &Slice<T> {
1016        Slice::from_slice(self.as_entries())
1017    }
1018
1019    /// Converts into a boxed slice of all the values in the set.
1020    ///
1021    /// Note that this will drop the inner hash table and any excess capacity.
1022    pub fn into_boxed_slice(self) -> Box<Slice<T>> {
1023        Slice::from_boxed(self.into_entries().into_boxed_slice())
1024    }
1025
1026    /// Get a value by index
1027    ///
1028    /// Valid indices are `0 <= index < self.len()`.
1029    ///
1030    /// Computes in **O(1)** time.
1031    pub fn get_index(&self, index: usize) -> Option<&T> {
1032        self.as_entries().get(index).map(Bucket::key_ref)
1033    }
1034
1035    /// Returns a slice of values in the given range of indices.
1036    ///
1037    /// Valid indices are `0 <= index < self.len()`.
1038    ///
1039    /// Computes in **O(1)** time.
1040    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> {
1041        let entries = self.as_entries();
1042        let range = try_simplify_range(range, entries.len())?;
1043        entries.get(range).map(Slice::from_slice)
1044    }
1045
1046    /// Get the first value
1047    ///
1048    /// Computes in **O(1)** time.
1049    pub fn first(&self) -> Option<&T> {
1050        self.as_entries().first().map(Bucket::key_ref)
1051    }
1052
1053    /// Get the last value
1054    ///
1055    /// Computes in **O(1)** time.
1056    pub fn last(&self) -> Option<&T> {
1057        self.as_entries().last().map(Bucket::key_ref)
1058    }
1059
1060    /// Remove the value by index
1061    ///
1062    /// Valid indices are `0 <= index < self.len()`.
1063    ///
1064    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
1065    /// last element of the set and popping it off. **This perturbs
1066    /// the position of what used to be the last element!**
1067    ///
1068    /// Computes in **O(1)** time (average).
1069    pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
1070        self.map.swap_remove_index(index).map(|(x, ())| x)
1071    }
1072
1073    /// Remove the value by index
1074    ///
1075    /// Valid indices are `0 <= index < self.len()`.
1076    ///
1077    /// Like [`Vec::remove`], the value is removed by shifting all of the
1078    /// elements that follow it, preserving their relative order.
1079    /// **This perturbs the index of all of those elements!**
1080    ///
1081    /// Computes in **O(n)** time (average).
1082    pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
1083        self.map.shift_remove_index(index).map(|(x, ())| x)
1084    }
1085
1086    /// Moves the position of a value from one index to another
1087    /// by shifting all other values in-between.
1088    ///
1089    /// * If `from < to`, the other values will shift down while the targeted value moves up.
1090    /// * If `from > to`, the other values will shift up while the targeted value moves down.
1091    ///
1092    /// ***Panics*** if `from` or `to` are out of bounds.
1093    ///
1094    /// Computes in **O(n)** time (average).
1095    #[track_caller]
1096    pub fn move_index(&mut self, from: usize, to: usize) {
1097        self.map.move_index(from, to)
1098    }
1099
1100    /// Swaps the position of two values in the set.
1101    ///
1102    /// ***Panics*** if `a` or `b` are out of bounds.
1103    ///
1104    /// Computes in **O(1)** time (average).
1105    #[track_caller]
1106    pub fn swap_indices(&mut self, a: usize, b: usize) {
1107        self.map.swap_indices(a, b)
1108    }
1109}
1110
1111/// Access [`IndexSet`] values at indexed positions.
1112///
1113/// # Examples
1114///
1115/// ```
1116/// use indexmap::IndexSet;
1117///
1118/// let mut set = IndexSet::new();
1119/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1120///     set.insert(word.to_string());
1121/// }
1122/// assert_eq!(set[0], "Lorem");
1123/// assert_eq!(set[1], "ipsum");
1124/// set.reverse();
1125/// assert_eq!(set[0], "amet");
1126/// assert_eq!(set[1], "sit");
1127/// set.sort();
1128/// assert_eq!(set[0], "Lorem");
1129/// assert_eq!(set[1], "amet");
1130/// ```
1131///
1132/// ```should_panic
1133/// use indexmap::IndexSet;
1134///
1135/// let mut set = IndexSet::new();
1136/// set.insert("foo");
1137/// println!("{:?}", set[10]); // panics!
1138/// ```
1139impl<T, S> Index<usize> for IndexSet<T, S> {
1140    type Output = T;
1141
1142    /// Returns a reference to the value at the supplied `index`.
1143    ///
1144    /// ***Panics*** if `index` is out of bounds.
1145    fn index(&self, index: usize) -> &T {
1146        if let Some(value) = self.get_index(index) {
1147            value
1148        } else {
1149            panic!(
1150                "index out of bounds: the len is {len} but the index is {index}",
1151                len = self.len()
1152            );
1153        }
1154    }
1155}
1156
1157impl<T, S> FromIterator<T> for IndexSet<T, S>
1158where
1159    T: Hash + Eq,
1160    S: BuildHasher + Default,
1161{
1162    fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
1163        let iter = iterable.into_iter().map(|x| (x, ()));
1164        IndexSet {
1165            map: IndexMap::from_iter(iter),
1166        }
1167    }
1168}
1169
1170#[cfg(feature = "std")]
1171#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1172impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
1173where
1174    T: Eq + Hash,
1175{
1176    /// # Examples
1177    ///
1178    /// ```
1179    /// use indexmap::IndexSet;
1180    ///
1181    /// let set1 = IndexSet::from([1, 2, 3, 4]);
1182    /// let set2: IndexSet<_> = [1, 2, 3, 4].into();
1183    /// assert_eq!(set1, set2);
1184    /// ```
1185    fn from(arr: [T; N]) -> Self {
1186        Self::from_iter(arr)
1187    }
1188}
1189
1190impl<T, S> Extend<T> for IndexSet<T, S>
1191where
1192    T: Hash + Eq,
1193    S: BuildHasher,
1194{
1195    fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
1196        let iter = iterable.into_iter().map(|x| (x, ()));
1197        self.map.extend(iter);
1198    }
1199}
1200
1201impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
1202where
1203    T: Hash + Eq + Copy + 'a,
1204    S: BuildHasher,
1205{
1206    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
1207        let iter = iterable.into_iter().copied();
1208        self.extend(iter);
1209    }
1210}
1211
1212impl<T, S> Default for IndexSet<T, S>
1213where
1214    S: Default,
1215{
1216    /// Return an empty [`IndexSet`]
1217    fn default() -> Self {
1218        IndexSet {
1219            map: IndexMap::default(),
1220        }
1221    }
1222}
1223
1224impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
1225where
1226    T: Hash + Eq,
1227    S1: BuildHasher,
1228    S2: BuildHasher,
1229{
1230    fn eq(&self, other: &IndexSet<T, S2>) -> bool {
1231        self.len() == other.len() && self.is_subset(other)
1232    }
1233}
1234
1235impl<T, S> Eq for IndexSet<T, S>
1236where
1237    T: Eq + Hash,
1238    S: BuildHasher,
1239{
1240}
1241
1242impl<T, S> IndexSet<T, S>
1243where
1244    T: Eq + Hash,
1245    S: BuildHasher,
1246{
1247    /// Returns `true` if `self` has no elements in common with `other`.
1248    pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
1249    where
1250        S2: BuildHasher,
1251    {
1252        if self.len() <= other.len() {
1253            self.iter().all(move |value| !other.contains(value))
1254        } else {
1255            other.iter().all(move |value| !self.contains(value))
1256        }
1257    }
1258
1259    /// Returns `true` if all elements of `self` are contained in `other`.
1260    pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1261    where
1262        S2: BuildHasher,
1263    {
1264        self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
1265    }
1266
1267    /// Returns `true` if all elements of `other` are contained in `self`.
1268    pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1269    where
1270        S2: BuildHasher,
1271    {
1272        other.is_subset(self)
1273    }
1274}
1275
1276impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
1277where
1278    T: Eq + Hash + Clone,
1279    S1: BuildHasher + Default,
1280    S2: BuildHasher,
1281{
1282    type Output = IndexSet<T, S1>;
1283
1284    /// Returns the set intersection, cloned into a new set.
1285    ///
1286    /// Values are collected in the same order that they appear in `self`.
1287    fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
1288        self.intersection(other).cloned().collect()
1289    }
1290}
1291
1292impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
1293where
1294    T: Eq + Hash + Clone,
1295    S1: BuildHasher + Default,
1296    S2: BuildHasher,
1297{
1298    type Output = IndexSet<T, S1>;
1299
1300    /// Returns the set union, cloned into a new set.
1301    ///
1302    /// Values from `self` are collected in their original order, followed by
1303    /// values that are unique to `other` in their original order.
1304    fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
1305        self.union(other).cloned().collect()
1306    }
1307}
1308
1309impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
1310where
1311    T: Eq + Hash + Clone,
1312    S1: BuildHasher + Default,
1313    S2: BuildHasher,
1314{
1315    type Output = IndexSet<T, S1>;
1316
1317    /// Returns the set symmetric-difference, cloned into a new set.
1318    ///
1319    /// Values from `self` are collected in their original order, followed by
1320    /// values from `other` in their original order.
1321    fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
1322        self.symmetric_difference(other).cloned().collect()
1323    }
1324}
1325
1326impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
1327where
1328    T: Eq + Hash + Clone,
1329    S1: BuildHasher + Default,
1330    S2: BuildHasher,
1331{
1332    type Output = IndexSet<T, S1>;
1333
1334    /// Returns the set difference, cloned into a new set.
1335    ///
1336    /// Values are collected in the same order that they appear in `self`.
1337    fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
1338        self.difference(other).cloned().collect()
1339    }
1340}